数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} P_{\alpha}(x)&\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^6 \sigma_i(\frac{\alpha }{x-v}) \ \Bigr] & P_{\beta}(x)&\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^6 \sigma_i(\frac{\beta }{x-v}) \ \Bigr] \\ P_{\gamma}(x)&\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^6 \sigma_i(\frac{\gamma }{x-v}) \ \Bigr] & & \notag \\ \end{align}
\begin{align} P_{\alpha}(x,\alpha,\beta,\gamma)&=r_3(\gamma) \cdot Q_{\alpha,1}(x,\alpha,\beta,\gamma)+P_{\alpha,1}(x,\alpha,\beta) \equiv P_{\alpha,1}(x,\alpha,\beta) \qquad( \ \because \ r_3=0 \ ) \notag \\ \notag \\ P_{\alpha,1}(x,\alpha,\beta)&=-12\beta^6-36\alpha\beta^5+(9\alpha^2+27x\alpha+18x^2)\beta^4 \notag \\ &+(78\alpha^3+54x\alpha^2+36x^2\alpha)\beta^3+(9\alpha^4+54x\alpha^3+54x^2\alpha^2-9x^3\alpha-6x^4)\beta^2 \notag \\ &+(-36\alpha^5+27x\alpha^4+36x^2\alpha^3-9x^3\alpha^2-6x^4\alpha)\beta-12\alpha^6+18x^2\alpha^4-6x^4\alpha^2 \notag \\ \notag \\ &\Downarrow \notag \\ \notag \\ P_{\alpha,1}(x,\alpha,\beta)&=\ r_2(\beta) \cdot Q_{\alpha,2}(x,\alpha,\beta)+P_{\alpha,2}(x,\alpha) \equiv P_{\alpha,2}(x,\alpha) \qquad( \ \because \ r_2=0 \ ) \notag \\ \notag \\ P_{\alpha,2}(x,\alpha)&=81\alpha^6+486\alpha^4+(9x^3+81x)\alpha^3+729\alpha^2 \notag \\ &+(27x^3+243x)\alpha+18x^4+162x^2+324 \notag \\ \notag \\ &\Downarrow \notag \\ \notag \\ P_{\alpha,2}(x,\alpha)&=\ r_1(\alpha) \cdot Q_{\alpha,3}(x,\alpha)+P_{\alpha,3}(x) \equiv P_{\alpha,3}(x) \qquad( \ \because \ r_1=0 \ ) \notag \\ \notag \\ P_{\alpha,3}(x)&=18x^4-9x^3+162x^2-81x+405 \equiv P_{\alpha}(x) \notag \\ \end{align}
\begin{align} P_{\alpha}(x)&=18x^4-9x^3+162x^2-81x+405 \notag \\ P_{\beta}(x)&=18x^3+162x \\ P_{\gamma}(x)&=-18x^4-9x^3-162x^2-81x-405 \notag \\ \end{align}
\begin{align} \alpha&=\left.\frac{P_{\alpha}(x)}{V'(x)}\right|_{x=v}=P_{\alpha}(v) \cdot V^{'}(v)^{-1} & \beta&=\left.\frac{P_{\beta}(x)}{V'(x)}\right|_{x=v}=P_{\beta}(v) \cdot V^{'}(v)^{-1} \\ \notag \\ \gamma&=\left.\frac{P_{\gamma}(x)}{V'(x)}\right|_{x=v}=P_{\gamma}(v) \cdot V^{'}(v)^{-1} & &V^{'}(v)^{-1}=\frac{v^5}{3645}+\frac{v^3}{243}+\frac{7 v}{810} \notag \\ \end{align}
\begin{align} &\qquad \qquad \Downarrow \notag \\ \alpha&=\biggl( 18v^4-9v^3+162v^2-81v+405 \biggr) \times \biggl( \frac{v^5}{3645}+\frac{v^3}{243}+\frac{7 v}{810} \biggr) \notag \\ &=\frac{2v^9}{405}-\frac{v^8}{405}+\frac{16v^7}{135}-\frac{8v^6}{135}+\frac{14v^5}{15}-\frac{37v^4}{90}+\frac{46v^3}{15}-\frac{7v^2}{10}+\frac{7v}{2}\notag \\ \notag \\ &\equiv \frac{v^4+15v^2-9v+36}{18} \quad (mod \ g_0(v))\notag \\ &\qquad \qquad \Downarrow \notag \\ \end{align}
\begin{align} \alpha&=\frac{v^4+15v^2-9v+36}{18} \qquad \qquad \beta=-\frac{v^4+15v^2+36}{9} \\ \gamma&=\frac{v^4+15v^2+9v+36}{18} \notag \\ \end{align}
\begin{align} v_1=&v & v_2=&-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6 \notag \\ v_3=& \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6 & v_4=& \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}-\frac{v}{2}+6 \\ v_5=& -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}-\frac{v}{2}-6 & v_6=& -v \notag \\ \end{align}
\begin{align} g_0(x)=&x^6+18x^4+81x^2+135 \notag \\ \notag \\ g_0(v_2)&= \ g_0 \left(-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6 \right) \notag \\ &={{\left( -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6\right) }^{6}} +18 {{\left( -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6\right) }^{4}} \notag \\ &+81 {{\left( -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6\right) }^{2}}+135=0 \quad (mod \ g_0(v)) \\ \notag \\ \therefore \ g_0(v_i)&=0 \quad (i=1,2,..,6) \\ \end{align}