数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} h_0&=\prod_{\rho_i \in \kappa_1 }\rho_i(x-v)=(x-v_1)(x-v_4)(x-v_5)\notag \\ &=\left( x-v\right) \, \left( x-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6\right) \, \left( x+\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) \notag \\ &= \ x^3+9x-v^3-9v \qquad (mod \ g_0(v))\\ \notag \\ h_1&=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=(x-v_2)(x-v_3)(x-v_6)\notag \\ &=\left( x+v\right) \, \left( x-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}-\frac{v}{2}-6\right) \, \left( x+\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}-\frac{v}{2}+6\right) \notag \\ &= \ x^3+9x+v^3+9v \qquad (mod \ g_0(v))\\ \end{align}
\begin{align} &\begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} \frac{(h_0+h_1)}{2} \\ \frac{(h_0-h_1)}{2} \end{bmatrix} = \begin{bmatrix} x^3+9x \\ -v^3-9v \end{bmatrix}\\ \notag \\ &\therefore \quad t_0=x^3+9x \ \in F_0[x] \qquad t_1= -v^3-9v \in F_0(v)\\ \end{align}
Step2 二項方程式 \(B_1(x)\) と新たな添加数 \(a_1\) の生成
\begin{align}
&\left\{
\begin{array}{l}
t_0 \ \in \ F_0[x] \\
t_1 \ \in \ F_0(v) \\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
B_1(x)=x^2-A_1=0 \quad
t_1^2=A_1=-135 \in \ F_0 \\
a_1=\sqrt{A_1} \ \in \ F_0(a_1) \equiv \ F_1 \\
\end{array}
\right. \notag \\
\end{align}
\begin{align} &t_1^2=(-v^3-9v)^2=v^6+18v^4+81v^2=-135=A_1 \ \in F_0 \quad (mod \ g_0(v))\\ \end{align}
\begin{align} &B_1(x)=x^2-A_1=0 \quad \ \therefore \ t_1=\sqrt{-135}= \sqrt{A_1} \equiv a_1 \\ \notag \\ &\bbox[#FFFF00]{ \tilde{t_1}=a_1 \ \in F_0(a_1) \equiv F_1 } \end{align}
\begin{align} &\left\{ \begin{array}{l} t_0=x^3+9x \ \in F_0[x] \\ \tilde{t_1}=a_1 \ \in F_1 \\ \end{array} \right.\\ \end{align}
Step3 ILRT(Inverse Lagrange Resolvent Transformation)
\begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} = \begin{bmatrix} x^3+9x+a_1\\ x^3+9x-a_1 \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{l} g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \ \in \ F_0[x] \\ g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x] \\ \end{array} \right. \\ \end{align}
\begin{align} & t_1^2=-135=A_1 \quad \Rightarrow \quad B_1(x)=x^2-A_1=0\\ \notag \\ &\tilde{t_1} \equiv a_1= \sqrt{A_1} \ \in F_1 \\ \notag \\ &g_1(x)=x^3+9x+a_1 \ \in F_1[x]\\ \end{align}