数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} \rho_{1}(v) &\equiv v_1= v \notag \\ \rho_{2}(v) &\equiv v_2= -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6 \notag \\ \rho_{3}(v) &\equiv v_3= \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6 \\ \rho_{4}(v) &\equiv v_4= \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}-\frac{v}{2}+6 \notag \\ \rho_{5}(v) &\equiv v_5= -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}-\frac{v}{2}-6 \notag \\ \rho_{6}(v) &\equiv v_6= -v \notag \\ \end{align}
\begin{align} &\rho_3 \circ \rho_2(v)=\rho_3 (\rho_2(v) ) =\rho_3(v_2)=\rho_3\bigl(-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6 \bigr)\\ \notag \\ &=-\frac{{{v_3}^{4}}}{6}-\frac{5 {{v_3}^{2}}}{2}+\frac{v_3}{2}-6 \\ \notag \\ &=-\frac{{{\left( \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) }^{4}}}{6} -\frac{5 {{\left( \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) }^{2}}}{2} +\frac{\left(\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) }{2}-6 \notag \\ \notag \\ &= \ \frac{{{v}^{4}}+15 {{v}^{2}}-3 v+36}{6} \ = \ v_4 \qquad (\ mod \ g_0(v) \ ) \\ \notag \\ &\therefore \quad \rho_3 \circ \rho_2(v)=\rho_3(v_2)=v_4=\rho_4(v) \\ \notag \\ &\qquad \Rightarrow \quad \rho_3 \circ \rho_2=\rho_4, \quad \rho_3(v_2)=v_4 \\ \end{align}
\( i \backslash j \) | \(\rho_1\) | \(\rho_2\) | \(\rho_3\) | \(\rho_4\) | \(\rho_5\) | \(\rho_6\) |
---|---|---|---|---|---|---|
\(\rho_1\) | \(\rho_1\) | \(\rho_2\) | \(\rho_3\) | \(\rho_4\) | \(\rho_5\) | \(\rho_6\) |
\(\rho_2\) | \(\rho_2\) | \(\rho_1\) | \(\rho_5\) | \(\rho_6\) | \(\rho_3\) | \(\rho_4\) |
\(\rho_3\) | \(\rho_3\) | \(\rho_4\) | \(\rho_1\) | \(\rho_2\) | \(\rho_6\) | \(\rho_5\) |
\(\rho_4\) | \(\rho_4\) | \(\rho_3\) | \(\rho_6\) | \(\rho_5\) | \(\rho_1\) | \(\rho_2\) |
\(\rho_5\) | \(\rho_5\) | \(\rho_6\) | \(\rho_2\) | \(\rho_1\) | \(\rho_4\) | \(\rho_3\) |
\(\rho_6\) | \(\rho_6\) | \(\rho_5\) | \(\rho_4\) | \(\rho_3\) | \(\rho_2\) | \(\rho_1\) |
\( i \backslash j \) | \(\rho_i(v_1)\) | \(\rho_i(v_2)\) | \(\rho_i(v_3)\) | \(\rho_i(v_4)\) | \(\rho_i(v_5)\) | \(\rho_i(v_6)\) |
---|---|---|---|---|---|---|
\(\rho_1\) | \(v_1\) | \(v_2\) | \(v_3\) | \(v_4\) | \(v_5\) | \(v_6\) |
\(\rho_2\) | \(v_2\) | \(v_1\) | \(v_5\) | \(v_6\) | \(v_3\) | \(v_4\) |
\(\rho_3\) | \(v_3\) | \(v_4\) | \(v_1\) | \(v_2\) | \(v_6\) | \(v_5\) |
\(\rho_4\) | \(v_4\) | \(v_3\) | \(v_6\) | \(v_5\) | \(v_1\) | \(v_2\) |
\(\rho_5\) | \(v_5\) | \(v_6\) | \(v_2\) | \(v_1\) | \(v_4\) | \(v_3\) |
\(\rho_6\) | \(v_6\) | \(v_5\) | \(v_4\) | \(v_3\) | \(v_2\) | \(v_1\) |
\begin{align} \alpha&=\frac{{{v}^{4}}}{18}+\frac{5 {{v}^{2}}}{6}-\frac{v}{2}+2 \\ \notag \\ \rho_3(\alpha)=&\rho_3 \biggl( \frac{{{v}^{4}}}{18}+\frac{5 {{v}^{2}}}{6}-\frac{v}{2}+2 \biggr)=\frac{{{v_3}^{4}}}{18}+\frac{5 {{v_3}^{2}}}{6}-\frac{v_3}{2}+2\\ &=\frac{{{\left( \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) }^{4}}}{18}+\frac{5 {{\left( \frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) }^{2}}}{6} -\frac{\left(\frac{{{v}^{4}}}{6}+ \frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right)}{2}+2 \notag \\ &=-\frac{{{v}^{4}}}{9}-\frac{5 {{v}^{2}}}{3}-4 \ = \ \beta \qquad ( \ mod \ g_0(v) \ ) \\ \notag \\ &\therefore \quad \rho_3(\alpha)= \beta \quad \rho_3(\beta) = \alpha \quad \rho_3(\gamma) = \ \gamma \\ \end{align}
\( \ \) | \(\rho_i(\alpha)\) | \(\rho_i(\beta)\) | \(\rho_i(\gamma)\) |
---|---|---|---|
\(\rho_1\) | \(\alpha\) | \(\beta\) | \(\gamma\) |
\(\rho_2\) | \(\alpha\) | \(\gamma\) | \(\beta\) |
\(\rho_3\) | \(\beta\) | \(\alpha\) | \(\gamma\) |
\(\rho_4\) | \(\beta\) | \(\gamma\) | \(\alpha\) |
\(\rho_5\) | \(\gamma\) | \(\alpha\) | \(\beta\) |
\(\rho_6\) | \(\gamma\) | \(\beta\) | \(\alpha\) |
\( \quad\{\rho_1,..,\rho_6\} = Gal(F_0(v)/F_0) \cong S_3\)