\begin{align*} &f(x)=x^5-10x^3+5x^2+10x+13 \\ \\ &\qquad \{\alpha,\beta,\gamma,\delta,\epsilon\}: \ roots \ of \ f(x)\\ &\qquad v: \ Primitive \ element \\ \\ & v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma+4 \cdot \delta+5 \cdot \epsilon \end{align*}
\[ \qquad The \ system \ of \ equations \]
\[ \left\{ \begin{array}{l} r_1=\alpha^5-10\alpha^3+5\alpha^2+10 \alpha +1=0\\ r_2=\beta^4+\alpha\beta^3+(\alpha^2-10)\beta^2+(\alpha^3-10 \alpha +5)\beta \\ \qquad +\alpha^4-10\alpha^2+5 \alpha +10=0\\ r_3=\gamma^3+( \beta +\alpha )\gamma^2+(\beta^2+\alpha \beta +\alpha^2-10)\gamma +\beta^3 \\ \qquad +\alpha\beta^2+(\alpha^2-10) \beta +\alpha^3-10 \alpha +5=0\\ r_4=\delta^2+( \gamma +\beta +\alpha )\delta +\gamma^2+( \beta +\alpha )\gamma \\ \qquad +\beta^2+\alpha \beta +\alpha^2-10=0 \\ r_5=\alpha+\beta+\gamma+\delta+\epsilon=0 \\ r_6=v-(\alpha+2\beta+3\gamma+4\delta+5\epsilon )=0 \\ \end{array} \right.\\ \quad \\ \qquad \qquad \qquad \Downarrow \]
\[ \qquad Elimination \ Theory \]
\[ V(v)= {{v}^{120}}-3000 {{v}^{118}}+4350000 {{v}^{116}}.... \\ \qquad \qquad ..........\\ \quad \\ \qquad =( v^5-125v^3+2500v-4375 )\times .....\\ \qquad \times (v^5-125v^3+800v^2-1750 v+1225 ) \\ \]
\[g_{0}(x)=x^5-125x^3+2500x-4375 \]
\[ g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\zeta) \]
\[Factorization \ of \ f(x) \ on \ F_0(v)\] \[\quad "maxima's \ function \ "\] \[\qquad factor(f(x),g_0(v))\]
\begin{align*} &\alpha=\alpha(v)=\frac{22 {{v}^{4}}+25 {{v}^{3}}-2575 {{v}^{2}}-5125 v+35250}{5375}\\ &\beta=\beta(v), \ \gamma=\gamma(v), \ \delta=\delta(v), \ \epsilon=\epsilon(v)\\ \quad \\ \end{align*}
\begin{align*} &roots \ of \ V(x)\\ &\quad [ \ v_1=v_1(v), \ ....\ , \ v_{120}=v_{120}(v) \ ] \\ \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,34,65,91,97) \\ &\qquad \qquad \Downarrow\ \\ &C_5: Galois \ group \ of \ F(x) \\ &\qquad composition \ series \quad C_5 \rhd \{e\} \end{align*}
\[g_1(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_1(x) \ \in \ F_0(a_1)[x] \\ \quad \\ B_1=a_1^5+ 500\zeta^3+1000\zeta^2+875 \zeta +125 =0 \]
\begin{align*}
&v=v(a_1,\zeta) \\
\quad \\
&\left\{
\begin{array}{l}
\alpha=\alpha(a_1,\zeta), \quad
\beta=\beta(a_1,\zeta) \\
\gamma=\gamma(a_1,\zeta), \quad
\delta=\delta(a_1,\zeta) \\
\epsilon=\epsilon(a_1,\zeta) \\
\end{array}
\right.\\
\end{align*}
(覚書:\(t_1=0 \ \Rightarrow \ A_1=0\) の時どうしますか?
\(v\) の最小多項式 \(g_0(x)\) の根を考えます。 \(V(x)\) の根 \(\{ \ v_1,v_2,..,v_{120} \ \}\) の多項式表現式(26)を \(g_0(x)\) に 代入した結果が式(28)です。計算の結果 \(g_0(v_i)=0\) となる \(v_i\) は、式(29)に示す \(\{v_1,v_{34},v_{65},v_{91},v_{97}\}\) の5つとなる事が判りました。 又計算の際、拡大体 \(F_0(v)\) の中で計算するので \(( \ mod \ g_0(v)) \ \) を取る事に 注意する必要があります。
\begin{align} \setCounter{27} &\left\{ \begin{array}{l} g_0(v_1)= 0 \\ g_0(v_2)=-(252v^4-2450v^3-3500v^2+80850v+52150)/43 \\ \qquad ......... \\ g_0(v_{119})=(1314v^4+3350v^3-153700v^2-355650v+1919900)/43 \\ g_0(v_{120})=-8750 \qquad ( \ mod \ g_0(v) \ ) \end{array} \right. \\ \notag \\ &\qquad g_0(v_1)=g_0(v_{34})=g_0(v_{65})=g_0(v_{91})=g_0(v_{97})=0 \\ \notag \\ \end{align}
\begin{align} &\therefore \ g_0(x)=(x-v_{1})(x-v_{34})(x-v_{65})(x-v_{91})(x-v_{97})\\ \end{align}
\begin{align} \sigma_1 (v)&=v_1=v \notag \\ \sigma_{34} (v)&=v_{34}=\frac{22 {{v}^{4}}}{1075}+\frac{{{v}^{3}}}{43}-\frac{103 {{v}^{2}}}{43}-\frac{162 v}{43}+\frac{1410}{43} \notag \\ \sigma_{65} (v)&=v_{65}=-\frac{41 {{v}^{4}}}{1075}-\frac{23 {{v}^{3}}}{215}+\frac{190 {{v}^{2}}}{43}+\frac{513 v}{43}-\frac{2530}{43} \\ \sigma_{91} (v)&={v_{91}}=-\frac{9 {{v}^{4}}}{1075}-\frac{4 {{v}^{3}}}{215}+\frac{48 {{v}^{2}}}{43}+\frac{78 v}{43}-\frac{870}{43} \notag \\ \sigma_{97} (v)&={v_{97}}=\frac{28 {{v}^{4}}}{1075}+\frac{22 {{v}^{3}}}{215}-\frac{135 {{v}^{2}}}{43}-\frac{472 v}{43}+\frac{1990}{43} \notag \\ \end{align}
[1] ガロア拡大体\(F_0(v)\)に対し、\(F_0\)の元を不動にする \(\sigma_i(v)=v_i\) を満たす
\(F_0\)上の自己同型写像 \(\{\sigma_{1}, \sigma_{34},\sigma_{65},\sigma_{91}, \sigma_{97}\}\) が存在する。
[2] \(F_0\)上の自己同型写像全体 \(\{\sigma_{1}, \sigma_{34},\sigma_{65},\sigma_{91}, \sigma_{97}\}\) は群をなす。
それを \(Gal(F_0(v)/F_0)\) で表し 「 \(F_0(v)/F_0\) のガロア群である」と言う。
[3] \(n(=5)=F_0(v)\)の拡大次数 \([F_0(v):F_0]=Gal(F_0(v)/F_0)\) の位数
[4] 拡大体 \(F_0(v)\) は \(f(x)\) の \(F_0\) 上の最小分解体である。
この時 \(Gal(F_0(v)/F_0)\) は 「\(f(x)\) の \(F_0\) 上のガロア群である」とも言う。
\begin{align} &\left\{ \begin{array}{l} &\sigma_{1}=\begin{pmatrix} 1&2&3&4&5 \\ 1&2&3&4&5 \end{pmatrix} &\ &\sigma_{34}=\begin{pmatrix} 1&2&3&4&5 \\ 2&3&4&5&1 \end{pmatrix} \\ &\sigma_{65}=\begin{pmatrix} 1&2&3&4&5 \\ 3&4&5&1&2 \end{pmatrix} &\ &\sigma_{91}=\begin{pmatrix} 1&2&3&4&5 \\ 4&5&1&2&3 \end{pmatrix} \\ &\sigma_{97}=\begin{pmatrix} 1&2&3&4&5 \\ 5&1&2&3&4 \end{pmatrix} &\ & \end{array} \right. \\ \end{align}
\( i \backslash j \) | \(\sigma_1\) | \(\sigma_{34}\) | \(\sigma_{65}\) | \(\sigma_{91}\) | \(\sigma_{97}\) |
---|---|---|---|---|---|
\(\sigma_1\) | \(\sigma_{1}\) | \(\sigma_{34}\) | \(\sigma_{65}\) | \(\sigma_{91}\) | \(\sigma_{97}\) |
\(\sigma_{34}\) | \(\sigma_{34}\) | \(\sigma_{65}\) | \(\sigma_{91}\) | \(\sigma_{97}\) | \(\sigma_{1}\) |
\(\sigma_{65}\) | \(\sigma_{65}\) | \(\sigma_{91}\) | \(\sigma_{97}\) | \(\sigma_{1}\) | \(\sigma_{34}\) |
\(\sigma_{91}\) | \(\sigma_{91}\) | \(\sigma_{97}\) | \(\sigma_{1}\) | \(\sigma_{34}\) | \(\sigma_{65}\) |
\(\sigma_{97}\) | \(\sigma_{97}\) | \(\sigma_{1}\) | \(\sigma_{34}\) | \(\sigma_{65}\) | \(\sigma_{91}\) |
\begin{align*} &Gal(F_0(v)/F_0)=C_5 =\{\sigma_{1}, \sigma_{34},\sigma_{65},\sigma_{91}, \sigma_{97}\} \ : \ \ F_0(v)/F_0 のガロア群\\ \notag \\ &\therefore \quad ガロア群 C_5 の組成列: \quad C_5 \ \rhd \ \{e\}\\ \end{align*}
\( i \backslash j \) | \(\sigma_i(v_1)\) | \(\sigma_i(v_{34})\) | \(\sigma_i(v_{65})\) | \(\sigma_i(v_{91})\) | \(\sigma_i(v_{97})\) |
---|---|---|---|---|---|
\(\sigma_1\) | \(v_{1}\) | \(v_{34}\) | \(v_{65}\) | \(v_{91}\) | \(v_{97}\) |
\(\sigma_{34}\) | \(v_{34}\) | \(v_{65}\) | \(v_{91}\) | \(v_{97}\) | \(v_{1}\) |
\(\sigma_{65}\) | \(v_{65}\) | \(v_{91}\) | \(v_{97}\) | \(v_{1}\) | \(v_{34}\) |
\(\sigma_{91}\) | \(v_{91}\) | \(v_{97}\) | \(v_{1}\) | \(v_{34}\) | \(v_{65}\) |
\(\sigma_{97}\) | \(v_{97}\) | \(v_{1}\) | \(v_{34}\) | \(v_{65}\) | \(v_{91}\) |
\( i \backslash j \) | \(\sigma_i(\alpha)\) | \(\sigma_i(\beta)\) | \(\sigma_i(\gamma)\) | \(\sigma_i(\delta)\) | \(\sigma(\epsilon)\) |
---|---|---|---|---|---|
\(\sigma_1\) | \(\alpha\) | \(\beta\) | \(\gamma\) | \(\delta\) | \(\epsilon\) |
\(\sigma_{34}\) | \(\beta\) | \(\gamma\) | \(\delta\) | \(\epsilon\) | \(\alpha\) |
\(\sigma_{65}\) | \(\gamma\) | \(\delta\) | \(\epsilon\) | \(\alpha\) | \(\beta\) |
\(\sigma_{91}\) | \(\delta\) | \(\epsilon\) | \(\alpha\) | \(\beta\) | \(\gamma\) |
\(\sigma_{97}\) | \(\epsilon\) | \(\alpha\) | \(\beta\) | \(\gamma\) | \(\delta\) |
\begin{align} Gal(F_0(v)/F_0)=C_5 =\{\sigma_{1}, \sigma_{34},\sigma_{65},\sigma_{91}, \sigma_{97}\} \ : \ f(x) のガロア群 \notag \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)