\begin{align*} &f(x)=x^5-10x^3+5x^2+10x+13 \\ \\ &\qquad \{\alpha,\beta,\gamma,\delta,\epsilon\}: \ roots \ of \ f(x)\\ &\qquad v: \ Primitive \ element \\ \\ & v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma+4 \cdot \delta+5 \cdot \epsilon \end{align*}
\[ \qquad The \ system \ of \ equations \]
\[ \left\{ \begin{array}{l} r_1=\alpha^5-10\alpha^3+5\alpha^2+10 \alpha +1=0\\ r_2=\beta^4+\alpha\beta^3+(\alpha^2-10)\beta^2+(\alpha^3-10 \alpha +5)\beta \\ \qquad +\alpha^4-10\alpha^2+5 \alpha +10=0\\ r_3=\gamma^3+( \beta +\alpha )\gamma^2+(\beta^2+\alpha \beta +\alpha^2-10)\gamma +\beta^3 \\ \qquad +\alpha\beta^2+(\alpha^2-10) \beta +\alpha^3-10 \alpha +5=0\\ r_4=\delta^2+( \gamma +\beta +\alpha )\delta +\gamma^2+( \beta +\alpha )\gamma \\ \qquad +\beta^2+\alpha \beta +\alpha^2-10=0 \\ r_5=\alpha+\beta+\gamma+\delta+\epsilon=0 \\ r_6=v-(\alpha+2\beta+3\gamma+4\delta+5\epsilon )=0 \\ \end{array} \right.\\ \quad \\ \qquad \qquad \qquad \Downarrow \]
\[ \qquad Elimination \ Theory \]
\[ V(v)= {{v}^{120}}-3000 {{v}^{118}}+4350000 {{v}^{116}}.... \\ \qquad \qquad ..........\\ \quad \\ \qquad =( v^5-125v^3+2500v-4375 )\times .....\\ \qquad \times (v^5-125v^3+800v^2-1750 v+1225 ) \\ \]
\[g_{0}(x)=x^5-125x^3+2500x-4375 \]
\[ g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\zeta) \]
\[Factorization \ of \ f(x) \ on \ F_0(v)\] \[\quad "maxima's \ function \ "\] \[\qquad factor(f(x),g_0(v))\]
\begin{align*} &\alpha=\alpha(v)=\frac{22 {{v}^{4}}+25 {{v}^{3}}-2575 {{v}^{2}}-5125 v+35250}{5375}\\ &\beta=\beta(v), \ \gamma=\gamma(v), \ \delta=\delta(v), \ \epsilon=\epsilon(v)\\ \quad \\ \end{align*}
\begin{align*} &roots \ of \ V(x)\\ &\quad [ \ v_1=v_1(v), \ ....\ , \ v_{120}=v_{120}(v) \ ] \\ \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,34,65,91,97) \\ &\qquad \qquad \Downarrow\ \\ &C_5: Galois \ group \ of \ F(x) \\ &\qquad composition \ series \quad C_5 \rhd \{e\} \end{align*}
\[g_1(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_1(x) \ \in \ F_0(a_1)[x] \\ \quad \\ B_1=a_1^5+ 500\zeta^3+1000\zeta^2+875 \zeta +125 =0 \]
\begin{align*}
&v=v(a_1,\zeta) \\
\quad \\
&\left\{
\begin{array}{l}
\alpha=\alpha(a_1,\zeta), \quad
\beta=\beta(a_1,\zeta) \\
\gamma=\gamma(a_1,\zeta), \quad
\delta=\delta(a_1,\zeta) \\
\epsilon=\epsilon(a_1,\zeta) \\
\end{array}
\right.\\
\end{align*}
(覚書:\(t_1=0 \ \Rightarrow \ A_1=0\) の時どうしますか?
\begin{align} \setCounter{41} &\left\{ \begin{array}{l} h_0=(x-v_1), \quad h_1=(x-v_{34}), \quad h_2=(x-v_{65}) \\ h_3=(x-v_{91}), \quad h_4=(x-v_{97}) \\ \end{array} \right. \\ \notag \\ \end{align}
\( \qquad Lagrange \ resolvent \)
\begin{align} &\begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} =\frac{1}{5} \begin{bmatrix} 1&1&1&1&1 \\ 1&\zeta&\zeta^2&\zeta^3&\zeta^4\\ 1&(\zeta^2)&(\zeta^2)^2&(\zeta^2)^3&(\zeta^2)^4\\ 1&(\zeta^3)&(\zeta^3)^2&(\zeta^3)^3&(\zeta^3)^4\\ 1&(\zeta^4)&(\zeta^4)^2&(\zeta^4)^3&(\zeta^4)^4 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} \\ \notag \\ &\qquad \qquad \bbox[#00FFFF]{ Z=\zeta^4+\zeta^3+\zeta^2+\zeta+1=0 } \notag \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} t_0 \ \in \ F_1[x] \\ \{t_1,t_2,t_3,t_4\} \ \in \ F_1(v)[x] \end{array} \right. \ \Longrightarrow \ \left\{ \begin{array}{l} B_1=a_1^5-A_1=0 \quad A_1 \in F_0 \\ \{\tilde{t_1},\tilde{t_2},\tilde{t_3},\tilde{t_4} \} \ \in \ F_1[x]=F_0(a_1)[x] \end{array} \right. \\ \notag \\ \end{align}
\begin{align} &\begin{bmatrix} \tilde{h_0}\\ \tilde{h_1} \\ \tilde{h_2}\\ \tilde{h_3}\\ \tilde{h_4} \end{bmatrix} = \begin{bmatrix} 1&1&1&1&1 \\ 1&\zeta^4&(\zeta^2)^4&(\zeta^3)^4&(\zeta^4)^4\\ 1&\zeta^3&(\zeta^2)^3&(\zeta^3)^3&(\zeta^4)^3\\ 1&\zeta^2&(\zeta^2)^2&(\zeta^3)^2&(\zeta^4)^2\\ 1&\zeta^1&(\zeta^2)&(\zeta^3)&(\zeta^4) \end{bmatrix} \cdot \begin{bmatrix} t_0\\ \tilde{t_1} \\ \tilde{t_2} \\ \tilde{t_3} \\ \tilde{t_4} \end{bmatrix} \\ \notag \\ &g_0(x)=h_0 \cdot h_1 \cdot h_2 \cdot h_3 \cdot h_4 \quad \in \ F_0(v)[x] \\ &\qquad=(x-v_{1})(x-v_{34})(x-v_{65})(x-v_{91})(x-v_{97}) \notag \\ &\qquad \Downarrow \notag \\ &\left\{ \begin{array}{l} g_0(x)=\tilde{h_0}\cdot \tilde{h_1} \cdot \tilde{h_2}\cdot \tilde{h_3}\cdot \tilde{h_4} \ \in \ F_1[x] \\ g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x] \end{array} \right. \\ \end{align}
\begin{align} \rho \equiv \sigma_{34}, \quad \rho^2=\sigma_{65}, \quad \rho^3=\sigma_{91}, \quad \rho^4=\sigma_{97}, \quad \rho^5=e=\sigma_1 \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} h_0 \equiv (x-v)=(x-v_1) & & \\ h_1=\rho(h_0)=(x-v_{34}) \\ h_2=\rho(h_1)=\rho^2(h_0)=(x-v_{65}) \\ h_3=\rho(h_2)=\rho^3(h_0)=(x-v_{91}) \\ h_4=\rho(h_3)=\rho^4(h_0)=(x-v_{97}) \end{array} \right. \\ \end{align}
\begin{align} &t_0=x \notag \\ &t_1=\frac{1}{5375}\biggl[ \ \left( 37 {{v}^{4}}+130 {{v}^{3}}-4575 {{v}^{2}}-13750 v+71500\right) {{\zeta }^{3}} \notag \\ &\quad +\left( 69 {{v}^{4}}+225 {{v}^{3}}-8125 {{v}^{2}}-24625 v+113000\right) {{\zeta }^{2}} \notag \\ &\quad +\left( 6 {{v}^{4}}+85 {{v}^{3}}-800 {{v}^{2}}-7750 v+14500\right) \zeta \notag \\ &\quad +28 {{v}^{4}}+110 {{v}^{3}}-3375 {{v}^{2}}-12875 v+49750 \ \biggr] \notag \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \rho(t_0)=t_0=x \ \in \ F_0[x] \\ \rho(t_1)=\zeta^{-1}t_1 \\ \rho(t_2)=\zeta^{-2}t_2 \\ \rho(t_3)=\zeta^{-3}t_3 \\ \rho(t_4)=\zeta^{-4}t_4 \\ \end{array} \right. \qquad \Rightarrow \quad \left\{ \begin{array}{l} \rho(t_1^4 \cdot t_1)=t_1^4 \cdot t_1 \\ \rho(t_1^3 \cdot t_2)=t_1^3 \cdot t_2 \\ \rho(t_1^2 \cdot t_3)=t_1^2 \cdot t_3 \\ \rho(t_1^1 \cdot t_4)=t_1 \cdot t_4 \\ \end{array} \right. \\ \notag \\ &\quad \therefore \ t_1^{5-i} \cdot t_i \ \in \ F_0[x] \ (=F_0) \quad (i=1,2,3,4) \quad (\ \because \ \zeta^{-5}=1 \ ) \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)