\begin{align*} &f(x)=x^5-10x^3+5x^2+10x+13 \\ \\ &\qquad \{\alpha,\beta,\gamma,\delta,\epsilon\}: \ roots \ of \ f(x)\\ &\qquad v: \ Primitive \ element \\ \\ & v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma+4 \cdot \delta+5 \cdot \epsilon \end{align*}
\[ \qquad The \ system \ of \ equations \]
\[ \left\{ \begin{array}{l} r_1=\alpha^5-10\alpha^3+5\alpha^2+10 \alpha +1=0\\ r_2=\beta^4+\alpha\beta^3+(\alpha^2-10)\beta^2+(\alpha^3-10 \alpha +5)\beta \\ \qquad +\alpha^4-10\alpha^2+5 \alpha +10=0\\ r_3=\gamma^3+( \beta +\alpha )\gamma^2+(\beta^2+\alpha \beta +\alpha^2-10)\gamma +\beta^3 \\ \qquad +\alpha\beta^2+(\alpha^2-10) \beta +\alpha^3-10 \alpha +5=0\\ r_4=\delta^2+( \gamma +\beta +\alpha )\delta +\gamma^2+( \beta +\alpha )\gamma \\ \qquad +\beta^2+\alpha \beta +\alpha^2-10=0 \\ r_5=\alpha+\beta+\gamma+\delta+\epsilon=0 \\ r_6=v-(\alpha+2\beta+3\gamma+4\delta+5\epsilon )=0 \\ \end{array} \right.\\ \quad \\ \qquad \qquad \qquad \Downarrow \]
\[ \qquad Elimination \ Theory \]
\[ V(v)= {{v}^{120}}-3000 {{v}^{118}}+4350000 {{v}^{116}}.... \\ \qquad \qquad ..........\\ \quad \\ \qquad =( v^5-125v^3+2500v-4375 )\times .....\\ \qquad \times (v^5-125v^3+800v^2-1750 v+1225 ) \\ \]
\[g_{0}(x)=x^5-125x^3+2500x-4375 \]
\[ g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\zeta) \]
\[Factorization \ of \ f(x) \ on \ F_0(v)\] \[\quad "maxima's \ function \ "\] \[\qquad factor(f(x),g_0(v))\]
\begin{align*} &\alpha=\alpha(v)=\frac{22 {{v}^{4}}+25 {{v}^{3}}-2575 {{v}^{2}}-5125 v+35250}{5375}\\ &\beta=\beta(v), \ \gamma=\gamma(v), \ \delta=\delta(v), \ \epsilon=\epsilon(v)\\ \quad \\ \end{align*}
\begin{align*} &roots \ of \ V(x)\\ &\quad [ \ v_1=v_1(v), \ ....\ , \ v_{120}=v_{120}(v) \ ] \\ \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,34,65,91,97) \\ &\qquad \qquad \Downarrow\ \\ &C_5: Galois \ group \ of \ F(x) \\ &\qquad composition \ series \quad C_5 \rhd \{e\} \end{align*}
\[g_1(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_1(x) \ \in \ F_0(a_1)[x] \\ \quad \\ B_1=a_1^5+ 500\zeta^3+1000\zeta^2+875 \zeta +125 =0 \]
\begin{align*}
&v=v(a_1,\zeta) \\
\quad \\
&\left\{
\begin{array}{l}
\alpha=\alpha(a_1,\zeta), \quad
\beta=\beta(a_1,\zeta) \\
\gamma=\gamma(a_1,\zeta), \quad
\delta=\delta(a_1,\zeta) \\
\epsilon=\epsilon(a_1,\zeta) \\
\end{array}
\right.\\
\end{align*}
(覚書:\(t_1=0 \ \Rightarrow \ A_1=0\) の時どうしますか?
\begin{align} \setCounter{51} \rho(t_2)&=\frac{1}{5}\rho \left (h_0+\zeta^{2\cdot 1}h_1+\zeta^{2\cdot 2}h_2+\zeta^{2\cdot 3}h_3+\zeta^{2\cdot 4}h_4 \right) \notag \\ &=\frac{1}{5} \left (\rho(h_0)+\zeta^{2\cdot 1}\rho(h_1)+\zeta^{2\cdot 2}\rho(h_2) +\zeta^{2\cdot 3}\rho(h_3)+\zeta^{2\cdot 4}\rho(h_4) \right) \notag \\ &=\frac{1}{5} \left (h_1+\zeta^{2\cdot 1}h_2+\zeta^{2\cdot 2}h_3 +\zeta^{2\cdot 3}h_4+\zeta^{2\cdot 4}h_0 \right) \notag \\ &=\frac{\zeta^{-2}}{5} \left (\zeta^{2\cdot 1}h_1+\zeta^{2\cdot 2}h_2 +\zeta^{2\cdot 3}h_3+\zeta^{2\cdot 4}h_4+ \zeta^{2\cdot 5}h_0 \right) \notag \\ &=\zeta^{-2}t_2 \notag \\ \notag \\ & \therefore \ \rho(t_2)=\zeta^{-2}t_2 \\ \end{align}
\begin{align} t_1^5=&-500 {{\zeta }^{3}}-1000 {{\zeta }^{2}}-875 \zeta -125 \equiv A_1 \quad ( \ mod \ g_0(v) \ ), \ ( \ mod \ Z \ )\\ \notag \\ B_1=&a_1^5-A_1\qquad a_1\equiv \sqrt[5]{-500 {{\zeta }^{3}}-1000 {{\zeta }^{2}}-875 \zeta -125}=t_1 \\ \notag \\ a_1 \ &\in \ F_1=F_0(a_1) \notag \\ \end{align}
式(53)で示す様に、\(t_1^5\) は \(F_0 \ ( \ =Q(\zeta) \ )\) の数なので、この値を \(A_1\) とします。この \(A_1\) を 使って、式(54)の \(B_1=0\) という5次の2項方程式を定義し、その根を \(a_1 \ (=t_1)\) とします。\begin{align} t_2&=\frac{t_1^5 \cdot t_2}{t_1^5}=\frac{t_1^2 \cdot (t_1^3 \cdot t_2)}{A_1}=\frac{a_1^2 \cdot (t_1^3 \cdot t_2)}{A_1} \notag \\ t_3&=\frac{a_1^3 \cdot (t_1^2 \cdot t_3)}{A_1} \\ t_4&=\frac{a_1^4 \cdot (t_1 \cdot t_4)}{A_1} \notag \\ \notag \\ &\left\{ \begin{array}{l} &t_1^3 \cdot t_2=-125 \left( {{\zeta }^{2}}+\zeta +1\right) &\in \ F_0\\ &t_1^2 \cdot t_3=-25 \left( \zeta -1\right) \zeta \, \left( \zeta +1\right) &\in \ F_0\\ &t_1 \cdot t_4=-5 \left( \zeta -1\right) \, \left( {{\zeta }^{2}}+2 \zeta +2\right) &\in \ F_0\\ &A_1^{-1}=(3 {{\zeta }^{3}}+2 {{\zeta }^{2}}+\zeta +4)/625 &\in \ F_0\\ \end{array} \right. \\ \notag \\ &\qquad \qquad \Downarrow \notag \\ \notag \\ \end{align}
\begin{align} \tilde{t_1}&=a_1 & \in \ F_1=F_0(a_1) \\ \tilde{t_2}&=-\frac{{{a}_{1}^{2}}\, \left( {{\zeta }^{3}}+2 {{\zeta }^{2}}+2\right) }{5} & \in \ F_1=F_0(a_1) \notag \\ \tilde{t_3}&=-\frac{{{a}_{1}^{3}}\, \left( \zeta +1\right) \, \left( 4 {{\zeta }^{2}}-3 \zeta +4\right) }{25} & \in \ F_1=F_0(a_1) \notag \\ \tilde{t_4}&=\frac{{{a}_{1}^{4}}\, \left( 4 {{\zeta }^{3}}+3 {{\zeta }^{2}}+2 \zeta +6\right) }{125} & \in \ F_1=F_0(a_1) \notag \\ \end{align}
\begin{align} A_1^{-1}=d_0+d_1\zeta+d_2\zeta^2+d_3\zeta^3 \qquad A_1 \cdot A_1^{-1}=1 \notag \\ \end{align}
\begin{align} &\tilde{h_0}=t_0+ \tilde{t_1}+\tilde{t_2}+ \tilde{t_3}+\tilde{t_4} \\ &\quad = x+a_1-\frac{{{a}_{1}^{2}}\, \left( {{\zeta }^{3}}+2 {{\zeta }^{2}}+2\right) }{5} \notag \\ &\quad -\frac{{{a}_{1}^{3}}\, \left( \zeta +1\right) \, \left( 4 {{\zeta }^{2}}-3 \zeta +4\right) }{25} +\frac{{{a}_{1}^{4}}\, \left( 4 {{\zeta }^{3}}+3 {{\zeta }^{2}}+2 \zeta +6\right) }{125} \\ &\quad = g_1(x) \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)