\begin{align*} &f(x)=3x^3+3x+1 \quad \{\alpha,\beta,\gamma\}: \ roots \ of \ F(x)\\ &Primitive \ element \quad v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma \end{align*}
\[\qquad The \ system \ of \ equations\]
\[ \qquad \left\{ \begin{array}{l} \alpha^3+3\alpha+1=0\\ \beta^2+\alpha\beta+\alpha^2+3=0\\ \alpha+\beta+\gamma=0\\ v-(\alpha+2\beta+3\gamma)=0 \end{array} \right.\\ \qquad \qquad \qquad \Downarrow \]
\[\qquad Elimination \ Theory\]
\[ \qquad V(v)= v^6+18v^4+81v^2+135 \]
\[g_{0}(x)=x^6+18x^4+81x^2+135 \]
\[ \qquad g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \]
\[Factorization \ of \ f(x) \ on \ F_0(v)\] \[\quad "maxima's \ function \ "\] \[\qquad factor(f(x),g_0(v))\]
\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)前節で\(f(x)\)の根\(\{x_1,x_2,x_3\}\)を求める事が出来ましたが、\(\{\ \alpha,\beta,\gamma \ \}\)との 対応が未だ取れておりません。可能性は\(3!=6\)通りです。定式化するために、対称群\(S_3\)の 記号を導入します。
\begin{align} \setCounter{15} &\left\{ \begin{array}{l} \sigma_{1}=\begin{pmatrix} 1&2&3 \\ 1&2&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\beta&\gamma \end{pmatrix} \quad \sigma_{2}=\begin{pmatrix} 1&2&3 \\ 1&3&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\gamma&\beta \end{pmatrix} \\ \sigma_{3}=\begin{pmatrix} 1&2&3 \\ 2&1&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\alpha&\gamma \end{pmatrix} \quad \sigma_{4}=\begin{pmatrix} 1&2&3 \\ 2&3&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\gamma&\alpha \end{pmatrix} \\ \sigma_{5}=\begin{pmatrix} 1&2&3 \\ 3&1&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\alpha&\beta \end{pmatrix} \quad \sigma_{6}=\begin{pmatrix} 1&2&3 \\ 3&2&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\beta&\alpha \end{pmatrix} \end{array} \right. \\ \end{align}
\begin{align} &\qquad \qquad w \equiv x_{1}+2 x_{2}+3 x_{3} \\ \notag \\ &\left\{ \begin{array}{l} &\sigma_1 (w)=w_1=x_1+2x_2+3x_3 & &\sigma_2 (w)=w_2=x_1+2x_3+3x_2 \\ &\sigma_3 (w)=w_3=x_2+2x_1+3x_3 & &\sigma_4 (w)=w_4=x_2+2x_3+3x_1 \\ &\sigma_5 (w)=w_5=x_3+2x_1+3x_2 & &\sigma_6 (w)=w_6=x_3+2x_2+3x_1 \end{array} \right. \end{align}
\begin{align} \left\{ \begin{array}{l} &w_1= -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6 & & \bbox[#FFFF00]{w_2= v } \\ &w_3= -\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}-\frac{v}{2}-6 & &w_4=-v \\ &w_5=\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6 & &w_6=\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}-\frac{v}{2}+6 \end{array} \right. \end{align}
\begin{align} \alpha=&\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18} \\ \beta=&-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9} \\ \gamma=&\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18} \\ \end{align}
\begin{align} g_0(x) &=(x-v_1)(x-v_2)(x-v_3)(x-v_4)(x-v_5)(x-v_6) \\ \notag \\ v_1&=v=\alpha+2 \cdot \beta+3 \cdot \gamma\\ \end{align}
\begin{align} &\qquad \qquad v \equiv \alpha+2 \beta+3 \gamma \\ \notag \\ &\left\{ \begin{array}{l} &\sigma_1 (v)=v_1=\alpha+2\beta+3\gamma & &\sigma_2 (v)=v_2=\alpha+2\gamma+3\beta \\ &\sigma_3 (v)=v_3=\beta+2\alpha+3\gamma & &\sigma_4 (v)=v_4=\beta+2\gamma+3\alpha \\ &\sigma_5 (v)=v_5=\gamma+2\alpha+3\beta & &\sigma_6 (v)=v_6=\gamma+2\beta+3\alpha \end{array} \right. \end{align}
\begin{align} &{v_1}=v & &{v_2}=-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6 \\ &{v_3}=\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6 & &{v_4}=\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}-\frac{v}{2}+6 \\ &{v_5}=-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}-\frac{v}{2}-6 & &{v_6}=-v \\ \end{align}
\begin{align} g_0(x)=& \ {{x}^{6}}-\frac{{{v}^{8}} {{x}^{4}}}{18}-\frac{5 {{v}^{6}} {{x}^{4}}}{3} -\frac{33 {{v}^{4}} {{x}^{4}}}{2} -\frac{123 {{v}^{2}} {{x}^{4}}}{2}-72 {{x}^{4}} \notag \\ &+\frac{{{v}^{16}} {{x}^{2}}}{1296}+\frac{5 {{v}^{14}} {{x}^{2}}}{108} +\frac{83 {{v}^{12}} {{x}^{2}}}{72}+\frac{371 {{v}^{10}} {{x}^{2}}}{24}+\frac{1941 {{v}^{8}} {{x}^{2}}}{16} \notag \\ &+\frac{4539 {{v}^{6}} {{x}^{2}}}{8}+\frac{24633 {{v}^{4}} {{x}^{2}}}{16} +2214 {{v}^{2}} {{x}^{2}}+1296 {{x}^{2}}-\frac{{{v}^{18}}}{1296} \notag \\ &-\frac{5 {{v}^{16}}}{108}-\frac{83 {{v}^{14}}}{72}-\frac{1109 {{v}^{12}}}{72} -\frac{5743 {{v}^{10}}}{48}-\frac{4407 {{v}^{8}}}{8} \notag \\ &-\frac{23665 {{v}^{6}}}{16}-2142 {{v}^{4}}-1296 {{v}^{2}} \notag \\ \notag \\ =& \ {{x}^{6}}+18 {{x}^{4}}+81 {{x}^{2}}+135 \qquad ( \ mod \ g_0(v) \ )\\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)