\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)
\begin{align} \setCounter{25} & h_0=\prod_{\sigma_i \in \ A_3}\sigma_i(x-v)=(x-v_1)(x-v_4)(x-v_5) \\ & h_1=\prod_{\sigma_i \in \ (S_3-A_3)}\sigma_i(x-v)=(x-v_2)(x-v_3)(x-v_6) \\ \notag \\ & \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \qquad ( \ Lagrange \ resolvent \ )\\ \notag \\ &\left\{ \begin{array}{l} t_0 \ \in \ F_0[x] \\ t_1 \ \in \ F_0(v)[x] \end{array} \right. \quad \Longrightarrow \quad \left\{ \begin{array}{l} B_1=a_1^2-A_1=0 \quad A_1 \in F_0 \\ \tilde{t_1} \ \in \ F_1[x]=F_0(a_1)[x] \end{array} \right. \\ \notag \\ &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{l} g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \\ g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x] \end{array} \right. \\ \notag \\ & g_0(x)=0 \quad \Rightarrow \quad \left\{ \begin{array}{l} g_1(x)=0\\ B_1=0 \end{array} \right. \\ \end{align}
\(S_3/A_3\) | \( i \backslash j \) | \(\sigma_i(v_1)\) | \(\sigma_i(v_4)\) | \(\sigma_i(v_5)\) | \(\sigma_i(v_2)\) | \(\sigma_i(v_3)\) | \(\sigma_i(v_6)\) |
---|---|---|---|---|---|---|---|
\(\rho_1\) | \(\sigma_1\) | \(v_1\) | \(v_4\) | \(v_5\) | \(v_2\) | \(v_3\) | \(v_6\) |
\(\sigma_4\) | \(v_4\) | \(v_5\) | \(v_1\) | \(v_3\) | \(v_6\) | \(v_2\) | |
\(\sigma_5\) | \(v_5\) | \(v_1\) | \(v_4\) | \(v_6\) | \(v_2\) | \(v_3\) | |
\(\rho_2\) | \(\sigma_2\) | \(v_2\) | \(v_6\) | \(v_3\) | \(v_1\) | \(v_5\) | \(v_4\) |
\(\sigma_3\) | \(v_3\) | \(v_2\) | \(v_6\) | \(v_4\) | \(v_1\) | \(v_5\) | |
\(\sigma_6\) | \(v_6\) | \(v_3\) | \(v_2\) | \(v_5\) | \(v_4\) | \(v_1\) |
\begin{align} \sigma_i(h_0)=&\sigma_i((x-v_1)(x-v_4)(x-v_5))=h_0 \quad \sigma_i \in \ \rho_1 \\ \end{align}
\begin{align} h_0=&(x-v_1)(x-v_4)(x-v_5)\notag \\ =&\left( x-v\right) \, \left( x-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}+\frac{v}{2}-6\right) \, \left( x+\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}+\frac{v}{2}+6\right) \notag \\ =& \ x^3+9x-v^3-9v \qquad (mod \ g_0(v))\\ \notag \\ h_1=&(x-v_2)(x-v_3)(x-v_6)\notag \\ =&\left( x+v\right) \, \left( x-\frac{{{v}^{4}}}{6}-\frac{5 {{v}^{2}}}{2}-\frac{v}{2}-6\right) \, \left( x+\frac{{{v}^{4}}}{6}+\frac{5 {{v}^{2}}}{2}-\frac{v}{2}+6\right) \notag \\ =& \ x^3+9x+v^3+9v \qquad (mod \ g_0(v))\\ \end{align}
\begin{align} &\begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} \frac{(h_0+h_1)}{2} \\ \frac{(h_0-h_1)}{2} \end{bmatrix} = \begin{bmatrix} x^3+9x \\ -v^3-9v \end{bmatrix}\\ \notag \\ &\therefore \quad t_0 \ \in F_0[x] \qquad t_1 \notin F_0[x]\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \rho_1(h_0)=h_0\\ \rho_1(h_1)=h_1 \end{array} \right. \quad \left\{ \begin{array}{l} \rho_2(h_0)=h_1\\ \rho_2(h_1)=h_0 \end{array} \right. \\ &\qquad \Downarrow \notag \\ \therefore \quad &\left\{ \begin{array}{l} \rho_1(t_0)=t_0\\ \rho_1(t_1)=t_1 \end{array} \right. \quad \left\{ \begin{array}{l} \rho_2(t_0)=t_0\\ \rho_2(t_1)=-t_1 \end{array} \right. \\ &\qquad \Downarrow \notag \\ &\left\{ \begin{array}{l} \rho_1(t_1^2)=\rho_1(t_1) \cdot \rho_1(t_1)=(t_1)^2=t_1^2 \\ \rho_2(t_1^2)=\rho_2(t_1) \cdot \rho_2(t_1)=(-t_1)^2=t_1^2 \\ \end{array} \right. \\ \notag \\ \therefore \quad &\rho_1(t_1^2)=\rho_2(t_1^2)=t_1^2 \quad \Rightarrow \quad t_1^2 \in F_0 \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)