\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)
\begin{align} \setCounter{92} &B_0=a_0^2-A_0=0 \qquad A_0=-\frac{3}{4} \qquad \bbox[#BDFF4F]{ a_0=\sqrt{A_0}=\frac{\sqrt{-3}}{2} }\\ & \qquad a_0=\frac{\sqrt{-3}}{2} \quad \longrightarrow \quad \therefore \ \bbox[#FFFF00]{ a_{01}}=\frac{\sqrt{3}i}{2}, \quad \bbox[#FFFF00]{ a_{02} }=-\frac{\sqrt{3}i}{2}\\ \notag \\ &\varOmega = \omega^2+ \omega +1 =0 \qquad \omega=-\frac{1}{2}+a_0\\ & \therefore \quad \bbox[#FFFF00]{\omega_1 }=-\frac{1}{2}+a_{01}=-\frac{1}{2}+\frac{\sqrt{3}i}{2}\\ &\qquad \bbox[#FFFF00]{ \omega_2 }=-\frac{1}{2}+a_{02}=-\frac{1}{2}-\frac{\sqrt{3}i}{2}\\ \notag \\ &B_1=a_1^2-A_1=0 \qquad A_1=-135 \qquad \bbox[#BDFF4F]{ a_1=\sqrt{A_1}=\sqrt{-135} }\\ \notag \\ & \qquad a_1=\sqrt{-135} \quad \longrightarrow \quad \therefore \ \bbox[#FFFF00]{ a_{11} }=\sqrt{135}i, \quad \bbox[#FFFF00]{ a_{12} }=-\sqrt{135}i\\ \end{align}
\begin{align} &B_2=a_2^3-A_2=0 \qquad A_2=3\omega+\frac{a_1+3}{2}=3a_0+\frac{a_1}{2} \\ &\quad \bbox[#BDFF4F]{ a_2=\sqrt[3]{A_2}=\sqrt[3]{3\omega+\frac{a_1+3}{2}}=\sqrt[3]{3a_0+\frac{a_1}{2}} } \\ \notag \\ &A_{2jk}=3a_{0j}+\frac{a_{1k}}{2} \quad (j,k)=(1,2) \quad \rightarrow \quad a_{2jk}=\sqrt[3]{A_{2jk}}\\ \end{align} \begin{align} &A_{211}=\frac{3\sqrt{3}}{2}(\sqrt{5}+1) \cdot (i) &\rightarrow &\quad a_{211}= \bbox[#FFFF00]{ \{ \lambda_1,\lambda_2,\lambda_3 \} }\\ &A_{212}=\frac{3\sqrt{3}}{2}(\sqrt{5}-1) \cdot (-i) &\rightarrow &\quad a_{212}= \bbox[#FFFF00]{ \{ \mu_1,\mu_2,\mu_3 \} }\\ &A_{221}=\frac{3\sqrt{3}}{2}(\sqrt{5}-1) \cdot (i) &\rightarrow &\quad a_{221}= \bbox[#FFFF00]{\{ \mu_4,\mu_5,\mu_6 \} }\\ &A_{222}=\frac{3\sqrt{3}}{2}(\sqrt{5}+1) \cdot (-i) &\rightarrow &\quad a_{222}= \bbox[#FFFF00]{ \{ \lambda_4,\lambda_5,\lambda_6 \}}\\ \end{align} \begin{align} &r_1=\sqrt[3]{\frac{3\sqrt{3}}{2}(\sqrt{5}+1)} \fallingdotseq 2.0334 \qquad r_2=\sqrt[3]{\frac{3\sqrt{3}}{2}(\sqrt{5}-1)} \fallingdotseq 1.47536 \notag \\ \end{align}
\(a_0\) | \(a_1\) | \(a_2\) | \(\alpha\) | \(\beta\) | \(\gamma\) | |
---|---|---|---|---|---|---|
\(1\) | \(a_{01}\) | \(a_{11}\) | \(\lambda_1\) | \(B_z\) | \(C_z\) | \(A_z\) |
\(2\) | \(\lambda_2\) | \(A_z\) | \(B_z\) | \(C_z\) | ||
\(3\) | \(\lambda_3\) | \(C_z\) | \(A_z\) | \(B_z\) | ||
\(4\) | \(a_{12}\) | \(\mu_1\) | \(B_z\) | \(A_z\) | \(C_z\) | |
\(5\) | \(\mu_2\) | \(C_z\) | \(B_z\) | \(A_z\) | ||
\(6\) | \(\mu_3\) | \(A_z\) | \(C_z\) | \(B_z\) | ||
\(7\) | \(a_{02}\) | \(a_{11}\) | \(\mu_4\) | \(A_z\) | \(B_z\) | \(C_z\) |
\(8\) | \(\mu_5\) | \(B_z\) | \(C_z\) | \(A_z\) | ||
\(9\) | \(\mu_6\) | \(C_z\) | \(A_z\) | \(B_z\) | ||
\(10\) | \(a_{12}\) | \(\lambda_4\) | \(B_z\) | \(A_z\) | \(C_z\) | |
\(11\) | \(\lambda_5\) | \(A_z\) | \(C_z\) | \(B_z\) | ||
\(12\) | \(\lambda_6\) | \(C_z\) | \(B_z\) | \(A_z\) |
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)