ガロア理論を使って方程式を解いた事ありますか?

Home

【例題1】 EX1-RT1  EX1-RT2  EX1-RT3  EX1-RT4   ガロア群
         \(f(x)=x^3+3x+1\)           \(S_3\)
【例題2】 EX2  \(f(x)=x^3-3x+1\)           \(A_3\)
【例題3】 EX3  \(f(x)=x^5-10x^3+5x^2+10x+1\)  \( \ \ C_5\)
【例題4】 EX4  \(f(x)=x^4+4x+2\)           \(S_4\)


    【補足1】 APX1 代数体上での因数分解
    【補足2】 APX2 1の原始冪乗根 \("\omega \ and \ \zeta_5"\) の計算
    【補足3】 APX3 巡回多項式と円分方程式 \(\Phi_{17}(x)\)
    【補足4】 APX4 添加数生成時の計算のポイント
    【補足5】 APX5 \(x^3-2=0, \ x^5-3=0\) に関して
    【補足6】 APX6 拡大体 \(F_i\) での計算の注意点

【例題4】の解法手順

EX4-1

\begin{align*} &f(x)=x^4+4x+2 \\ &\qquad \{\alpha,\beta,\gamma,\delta\}: \ roots \ of \ f(x)\\ \\ & v: \ Primitive \ element \\ & \qquad v=1\cdot\alpha+2\cdot\beta+3\cdot\gamma+4 \cdot \delta \end{align*}

流れ
EX4-2

\[ \qquad The \ system \ of \ equations \]

\[ \left\{ \begin{array}{l} r_1={{\alpha }^{4}}+4\alpha +2=0\\ r_2={{\beta }^{3}}+\alpha {{\beta }^{2}}+{{\alpha }^{2}} \beta +{{\alpha }^{3}}+4=0 \\ r_3={{\gamma }^{2}}+\left( \beta +\alpha \right) \gamma +{{\beta }^{2}}+\alpha \beta +{{\alpha }^{2}}=0\\ r_4= \alpha+\beta+\gamma+\delta =0\\ r_5=v-(\alpha+2\beta+3\gamma+4\delta )=0 \\ \end{array} \right.\\ \quad \\ \qquad \qquad \qquad \Downarrow \]

\[ \qquad Elimination \ Theory \]

\[ V(v)=v^{24}-160v^{20}+5440v^18+30080v^{16}+...\\ \quad...+700091596800v^2+4691625312256\\ \]

流れ
EX4-3

\begin{align*} &V(x): \ irreducible \ polynomial \\ \\ &\therefore \ g_0(x) \equiv V(x) \qquad deg(g_0(x))=24\\ \\ &g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \\ \end{align*}

流れ
EX4-4

\[Factorization \ of \ f(x) \ on \ F_0(v)\] \[\quad "maxima's \ function \ "\] \[\qquad factor(f(x),g_0(v))\]

流れ
EX4-5

\begin{align*} &\alpha=\alpha(v), \ \beta=\beta(v), \ \gamma=\gamma(v), \ \delta=\delta(v)\\ \\ &roots \ of \ g_0(x) \ ( \ =V(x) \ )\\ &\quad [ \ v_1=v_1(v), \ ....\ , \ v_{24}=v_{24}(v) \ ] \\ \end{align*}

流れ
EX4-6

\begin{align*} &S_4: Galois \ group \ of \ f(x) \\ &composition \ series \quad S_4 \rhd \ A_4 \rhd \ V_4 \rhd \{e\} \end{align*}

流れ
EX4-7

\[g_1(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_1(x) \ \in \ F_0(a_1)[x]\qquad deg(g_1(x))=12 \\ \quad \\ B_1=a_1^2+17510400\]

流れ
EX4-8

\[g_2(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_2(x) \ \in \ F_1(a_2)[x] \qquad deg(g_2(x))=4\\ \quad \\ B_2=a_2^3-\frac{14 {a_1} \omega }{27}-2304 \omega -\frac{89 {a_1}}{135}+1088 \]

流れ
EX4-9

\[ g_3(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_3(x) \ \in \ F_2(a_3)[x] \qquad deg(g_3(x))=2\\ \]

\[ B_3=a_3^2-\biggl( \frac{23 {a_1} {{a}_{2}^{2}} \omega }{324480}+\frac{63 {{a}_{2}^{2}} \omega }{338}-\frac{8 {a_2} \omega }{13}\\ \qquad \qquad +\frac{{a_1} {{a}_{2}^{2}}}{324480}+\frac{135 {{a}_{2}^{2}}}{338}-\frac{32 {a_2}}{13} \biggr)\\ \]

流れ
EX4-10

\[ g_4(x)\ : \ minimal \ polynomial \ of \ v\\ \qquad g_4(x) \ \in \ F_3(a_4)[x] \qquad deg(g_4(x))=1\\ \]

\[ B_4=a_4^2-\biggl(-\frac{11 {a_1} {{a}_{2}^{2}} \omega }{2595840}+\frac{9 {{a}_{2}^{2}} \omega }{676}+\frac{2 {a_2} \omega }{13} \\ \qquad \qquad -\frac{23 {a_1} {{a}_{2}^{2}}}{5191680}-\frac{63 {{a}_{2}^{2}}}{5408}+\frac{3 {a_2}}{26}\biggr)\\ \]

流れ
EX4-11

\begin{align*} &v=v(a_1,a_2,a_3,a_4,\omega) \ \in \ F_4=F_0(a_1,a_2,a_3,a_4,\omega) \\ \\ &\left\{ \begin{array}{l} \alpha=\alpha(a_1,a_2,a_3,a_4,\omega), \ \ \beta=\beta(a_1,a_2,a_3,a_4,\omega) \\ \gamma=\gamma(a_1,a_2,a_3,a_4,\omega), \ \ \delta=\delta(a_1,a_2,a_3,a_4,\omega) \\ \end{array} \right.\\ \end{align*}

                                      Home   

EX4-11 \(f(x)\) の根の計算

前節で漸く \(v\) の最小多項式 \(g_4(x)\) が求まりました。
この最小多項式は \(x\) の一次式なので、 \(g_4(x)=0\) の根は簡単に計算出来て、その根が最終的に求める \(v\) の値となります。

\begin{align} \setCounter{103} &g_4(x)= x+\frac{{a_3}}{2}+{a_4} \\ &g_4(x)=0 \quad \Longrightarrow \quad \therefore \ v=-\frac{{a_3}}{2}-{a_4} \\ \end{align}

この\(v\)の値を、式(21)に代入すれば \(f(x)\) の4根が求まる事となります。 具体的計算を示してみます。式(106)で \(\alpha\) は \(v\) の多項式として表現されています。
代数計算ソフトmaximaを使うと下記のような命令で \(\alpha\) を計算する事が出来ます。 式(107)では、式(106)の \(\alpha\) を \(g_4(v)\) で剰余を取る計算です。\(g_4(v)\) は \(v\)の1次式ですから、剰余を取るという事は、式(105)の代入をする事と等価です。
式(107)以降は、巡回拡大を規定する4つの2項多項式を使って、剰余をとる計算になっています。 最後に式(108)の様に \(\Omega\) で剰余を取ると、\(\alpha\) の最終結果が式(109)で得る事が出来ます。

\begin{align} &\alpha=\frac{801167701943012874015343807 }{10126546386824616812436636833146824818688}{{v}^{23}}\notag \\ &\quad +\frac{51207699710669004924125}{199474971178044691573821786887815168} {{v}^{22}} \notag \\ \notag \\ &\qquad .............................. \notag \\ \notag \\ &\quad -\frac{1279063375083309131586881879157101 }{11886064249859873624873982160300416}v \notag \\ &\quad -\frac{2718803338720300088760700554765}{3043746508454051079922817793088} \\ \notag \\ \end{align}

\begin{align} & \qquad \Downarrow \notag \\ \notag \\ &\alpha:remainder(\alpha,g_4(v),v)$ \quad \leftarrow \quad ( \ mod \ g_4(v) \ ) \\ &\alpha:remainder(\alpha,B_4,a_4)$ \quad \leftarrow \quad ( \ mod \ B_4(v) \ ) \notag \\ &\alpha:remainder(\alpha,B_3,a_3)$ \quad \leftarrow \quad ( \ mod \ B_3(v) \ ) \notag \\ &\alpha:remainder(\alpha,B_2,a_2)$ \quad \leftarrow \quad ( \ mod \ B_2(v) \ ) \notag \\ &\alpha:remainder(\alpha,B_1,a_1)$ \quad \leftarrow \quad ( \ mod \ B_1(v) \ ) \notag \\ &\alpha:remainder(\alpha,Ω,ω); \quad \leftarrow \quad(最終結果出力)\quad ( \ mod \ \Omega \ ) \\ \end{align}

\begin{align} &\Rightarrow \ \frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}+20766720 {a_3} \Bigr] \\ \end{align}

他の3根も全く同様に計算出来ます。以下が \(f(x)\) の4根の最終結果となります。

\begin{align} &f(x)=x^4+4x+2 =(x-\alpha)(x-\beta)(x \ -\gamma)(x \ -\delta) \\ \end{align}

\begin{align} \notag \\ &\alpha=\frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}+20766720 {a_3} \Bigr] \\ \notag \\ &\beta=-\frac{1}{166133760}\Bigl[ \left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}-20766720 {a_3} \Bigr] \\ \notag \\ &\gamma=-\frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}-83066880 {a_4}+20766720 {a_3} \Bigr] \\ \notag \\ &\delta=\frac{1}{166133760}\Bigl[ \left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}-83066880 {a_4}-20766720 {a_3} \Bigr] \\ \end{align}



今まで計算してきた巡回拡大を下図Fig.4-6で振り返ってみました。それぞれの巡回拡大で付随する 2項方程式もまとめてみました。

体の変換

\begin{align} &\left\{ \begin{array}{l} \varOmega = \omega^2+ \omega +1 =0 \\ B_1=a_1^2-A_1=0 \qquad a_1=\sqrt{A_1} \\ B_2=a_2^3-A_2=0 \qquad a_2=\sqrt[3]{A_2}\\ B_3=a_3^2-A_3=0 \qquad a_3=\sqrt{A_3} \\ B_4=a_4^2-A_4=0 \qquad a_4=\sqrt{A_4} \\ \end{array} \right. \\ \end{align}


\begin{align} & A_1=-17510400 \\ & A_2= \frac{14 {a_1} \omega }{27}+2304 \omega +\frac{89 {a_1}}{135}-1088 \notag \\ & A_3=\frac{23 {a_1} {{a}_{2}^{2}} \omega }{324480}+\frac{63 {{a}_{2}^{2}} \omega }{338} -\frac{8 {a_2} \omega }{13}+\frac{{a_1} {{a}_{2}^{2}}}{324480} +\frac{135 {{a}_{2}^{2}}}{338}-\frac{32 {a_2}}{13} \notag \\ & A_4= -\frac{11 {a_1} {{a}_{2}^{2}} \omega }{2595840} +\frac{9 {{a}_{2}^{2}} \omega }{676}+\frac{2 {a_2} \omega }{13} -\frac{23 {a_1} {{a}_{2}^{2}}}{5191680}-\frac{63 {{a}_{2}^{2}}}{5408}+\frac{3 {a_2}}{26} \notag \\ \end{align}


\begin{align} g_0(x)=& \ x^{24}-160x^{20}++5440x^{18}+30080x^{16}+739840x^{14} \notag \\ & +25400832x^{12} -29593600x^{10}+1520414720x^8 \notag \\ &+35532554240x^6 +411134296064x^4+700091596800x^2 \notag \\ & +4691625312256\\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ g_4(x)=&\ x+\frac{{a_3}}{2}+{a_4} \qquad \therefore \ v=-\frac{{a_3}}{2}-{a_4} \\ \end{align}


以上がガロア理論を使って方程式を解く計算手順でした。

Homeに戻る   


Profile
  Name:scruta   Daily life:mowing             

Revision history
  1st upload: 2023/06/17
  revision2 : 2023/07/27


maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。

   download pageへ

Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)
  mailaddress