\begin{align*} &f(x)=3x^3+3x+1 \quad \{\alpha,\beta,\gamma\}: \ roots \ of \ f(x)\\ &Primitive \ element \quad v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma \end{align*}
\begin{align*} v_{1}=\alpha+2\beta+3\gamma \qquad v_{2}=\alpha+2\gamma+3\beta \\ v_{3}=\beta+2\alpha+3\gamma \qquad v_{4}=\beta+2\gamma+3\alpha\\ v_{5}=\gamma+2\alpha+3\beta \qquad v_{6}=\gamma+2\beta+3\alpha \end{align*} \begin{align*} V(x)=&(x-v_{1})(x-v_{2})(x-v_{3})\\ \times&(x-v_{4})(x-v_{5})(x-v_{6}) \end{align*}
\[V(x, \ \alpha,\beta,\gamma): symmetric \ function \ in \{\alpha,\beta,\gamma\} \] \[\qquad \qquad \Downarrow\] \[V(x, \ e_{1},e_{2},e_{3})\] \[\{e_1,e_2,e_3\}: elementary \ symmetric \ functions\]
\[g_{0}(x)=x^6+18x^4+81x^2+135 \]
\[ \qquad g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \]
\begin{align*} P_{\alpha}(x)=V(x)&\cdot \big( \frac{\gamma }{x-{v_6}}+\frac{\gamma }{x-{v_5}}+\frac{\beta }{x-{v_4}}\\ &+\frac{\beta }{x-{v_3}}+\frac{\alpha }{x-{v_2}}+\frac{\alpha }{x-{v_1}}\big)\\ \end{align*} \[\alpha=\left.\frac{P_\alpha(x)}{V'(x)}\right|_{x=v} \quad The \ same \ holds \ for \ \beta\ and \ \gamma \]
\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)
\begin{equation} \setCounter{0} f(x)=x^3+3x+1=0 \quad \in F_0[x] \end{equation}
\begin{align} v=1\cdot\alpha+2\cdot\beta+3\cdot\gamma \end{align}
\begin{align} \begin{split} v_{1}=\alpha+2\beta+3\gamma \qquad v_{2}=\alpha+2\gamma+3\beta \qquad v_{3}=\beta+2\alpha+3\gamma \\ v_{4}=\beta+2\gamma+3\alpha \qquad v_{5}=\gamma+2\alpha+3\beta \qquad v_{6}=\gamma+2\beta+3\alpha \end{split} \end{align}
\begin{align} \begin{split} \sigma_{1}=\begin{pmatrix} 1&2&3 \\ 1&2&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\beta&\gamma \end{pmatrix} \quad \sigma_{2}=\begin{pmatrix} 1&2&3 \\ 1&3&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\gamma&\beta \end{pmatrix} \\ \sigma_{3}=\begin{pmatrix} 1&2&3 \\ 2&1&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\alpha&\gamma \end{pmatrix} \quad \sigma_{4}=\begin{pmatrix} 1&2&3 \\ 2&3&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\gamma&\alpha \end{pmatrix} \\ \sigma_{5}=\begin{pmatrix} 1&2&3 \\ 3&1&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\alpha&\beta \end{pmatrix} \quad \sigma_{6}=\begin{pmatrix} 1&2&3 \\ 3&2&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\beta&\alpha \end{pmatrix} \end{split} \end{align}
\begin{align} \begin{split} \sigma_{1}(v)=v_{1}=\alpha+2\beta+3\gamma \qquad \sigma_{2}(v)=v_{2}=\alpha+2\gamma+3\beta \\ \sigma_{3}(v)=v_{3}=\beta+2\alpha+3\gamma \qquad \sigma_{4}(v)=v_{4}=\beta+2\gamma+3\alpha \\ \sigma_{5}(v)=v_{5}=\gamma+2\alpha+3\beta \qquad \sigma_{6}(v)=v_{6}=\gamma+2\beta+3\alpha \end{split} \end{align}
\begin{align} V(x)=&(x-v_{1})(x-v_{2})(x-v_{3})(x-v_{4})(x-v_{5})(x-v_{6})\\ \notag \\ V(x)=&\sigma_1(V(x)) = \sigma_2(V(x)) = \sigma_3(V(x)) \notag \\ =& \sigma_4(V(x)) = \sigma_5(V(x)) = \sigma_6(V(x)) \\ \notag \\ &\therefore\quad V(x) \in F_0[x] \end{align}
\begin{align} f_{\alpha\beta\gamma} \equiv & (x- \alpha)(x-\beta)(x-\gamma)\\ &e.g. \quad \sigma_3(f_{\alpha\beta\gamma})=(x-\beta)(x- \alpha)(x-\gamma) \notag\\ &\qquad \quad \sigma_5(f_{\alpha\beta\gamma})=(x-\gamma)(x- \alpha)(x-\beta) \notag\\ \notag \\ f(x)=&\sigma_1(f_{\alpha\beta\gamma})=\sigma_2(f_{\alpha\beta\gamma})=\sigma_3(f_{\alpha\beta\gamma}) \notag \\ =&\sigma_4(f_{\alpha\beta\gamma})=\sigma_5(f_{\alpha\beta\gamma})=\sigma_6(f_{\alpha\beta\gamma})\\ \notag \\ &\therefore \quad f(x) \in F_0[x] \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)