\begin{align*} &f(x)=3x^3+3x+1 \quad \{\alpha,\beta,\gamma\}: \ roots \ of \ f(x)\\ &Primitive \ element \quad v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma \end{align*}
\begin{align*} v_{1}=\alpha+2\beta+3\gamma \qquad v_{2}=\alpha+2\gamma+3\beta \\ v_{3}=\beta+2\alpha+3\gamma \qquad v_{4}=\beta+2\gamma+3\alpha\\ v_{5}=\gamma+2\alpha+3\beta \qquad v_{6}=\gamma+2\beta+3\alpha \end{align*} \begin{align*} V(x)=&(x-v_{1})(x-v_{2})(x-v_{3})\\ \times&(x-v_{4})(x-v_{5})(x-v_{6}) \end{align*}
\[ Remainder \ Theorem \] \[ \qquad (1) \quad \alpha^3+3\alpha+1=0 \\ \qquad (2) \quad \beta^2+\alpha\beta+\alpha^2+3=0\\ \qquad (3) \quad \alpha+\beta +\gamma=0\]
\[ \quad divide \ V(x) \ by \ (1),(2),(3) \] \[ \qquad \qquad \Downarrow \] \[g_{0}(x)=x^6+18x^4+81x^2+135 \]
\[ \qquad g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \]
\begin{align*} \begin{pmatrix} 1\\v\\v^2\\v^3\\v^4\\v^5 \end{pmatrix} = \begin{pmatrix}1 & 0 & 0 & 0 & 0 & 0\\ 0 & -1 & -2 & 0 & 0 & 0\\ -3 & 0 & 0 & 3 & 3 & 0\\ 3 & 3 & 24 & 0 & 0 & -6\\ 9 & -9 & 0 & -45 & -45 & 0\\ -72 & -9 & -288 & 9 & -9 & 90\end{pmatrix} \begin{pmatrix} 1\\ \beta \\ \alpha \\ \alpha\beta \\ \alpha^2 \\ \alpha^2\beta \end{pmatrix} \end{align*}
\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)
実は式(17)の3式は、\(f(x)\) の3根 \(\{\alpha,\beta,\gamma\}\) の「根と係数の関係式」から
計算される、
グレブナー基底と言われるものです。但し項順序は \([\gamma \gt \beta \gt \alpha]\) です。
下式(42)の根と係数の関係式 \(\{s_1,s_2,s_3\}\) より、\(" \ S-polynomial \ "\) と言う計算方式で、
式(43)(44)の様に式を変形してゆき、最終的には式(45)のグレブナー基底を計算してみます。
\begin{align} \setCounter{41} &\left\{ \begin{array}{l} e_1=\alpha+\beta+\gamma\\ e_2=\beta \gamma +\alpha \gamma +\alpha \beta \\ e_3=\alpha \beta \gamma \\ \end{array} \right. \quad \left\{ \begin{array}{l} s_1=\alpha+\beta+\gamma=0\\ s_2=\beta \gamma +\alpha \gamma +\alpha \beta -3=0 \\ s_3=\alpha \beta \gamma +1=0\\ \end{array} \right. \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &\left\{ \begin{array}{l} h_1&=S(s_1,s_2)=\beta \cdot s_1-s_2=\beta(\alpha+\beta+\gamma)-(\beta \gamma +\alpha \gamma +\alpha \beta -3) \\ &=\beta^2-\gamma\alpha+3\\ h_2&=S(s_1,h_1)=\alpha \cdot s_1-(-1) \cdot h_1=\alpha(\alpha+\beta+\gamma)+(\beta^2-\gamma\alpha+3) \\ &=\alpha^2+\alpha\beta+\beta^2+3 \\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} h_3&=S(s_2,s_3)=\alpha \cdot s_2-s_3=\alpha(\beta \gamma +\alpha \gamma +\alpha \beta -3)-(\alpha \beta \gamma+1)\\ &=\alpha^2\beta+\gamma\alpha^2-3\alpha-1\\ h_4&=S(s_1,h_3)=\alpha^2 s_1-h_3=\alpha^2(\alpha+\beta+\gamma)-(\alpha^2\beta+\gamma\alpha^2-3\alpha-1)\\ &=\alpha^3+3\alpha+1\\ \end{array} \right. \\ \notag \\ &\therefore \ h_2=\alpha^2+\alpha\beta+\beta^2+3=r_2 \qquad h_4=\alpha^3+3\alpha+1=r_1 \\ \end{align}
\begin{align} \notag \\ & s_1=e_1 \qquad s_2=e_2-3 \qquad s_3=e_3+1 \\ \notag \\ &\left\{ \begin{array}{l} h_2&=\alpha \cdot s_1+ h_1=\alpha \cdot s_1+\beta \cdot s_1-s_2 \\ &=\alpha e_1+\beta e_1-(e_2-3)=(\alpha+\beta)e_1-e_2+3\\ h_4&=\alpha^2 \cdot s_1-h_3=\alpha^2 \cdot s_1-\alpha \cdot s_2+s_3\\ &=\alpha^2 e_1-\alpha(e_2-3)+(e_3+1)=\alpha^2 e_1-\alpha e_2 +e_3+3\alpha+1\\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} r_3=e_1\\ r_2=h_2=(\alpha+\beta)e_1-e_2+3\\ r_1=h_4=\alpha^2 e_1-\alpha e_2 +e_3+3\alpha+1\\ \end{array} \right. \\ \notag \\ &\qquad \Downarrow \notag \\ &\left\{ \begin{array}{l} e_1=r_3 \\ e_2=(\alpha+\beta)r_3-r_2+3\\ e_3=r_1+\alpha\beta r_3-\alpha r_2-1 \\ \end{array} \right. \\ \end{align}
\begin{align} &V(x)=c_6x^6+c_5x^5+c_4x^4+c_3x^3+c_2x^2+c_1x+c_0 \\ \notag \\ &\left\{ \begin{array}{l} c_6=1\\ c_5=-12e_1\\ c_4=6e_2+58e_1^2\\ c_3=-48e_1e_2-144e_1^3\\ c_2=9e_2^2+138e_1^2e_2+193e_1^4\\ c_1=-36e_1e_2^2-168e_1^3e_2-132e_1^5\\ c_0=27e_3^2-18e_1e_2e_3+4e_1^3e_3+4e_2^3+35e_1^2e_2^2+72e_1^4e_2+3e_1^6\\ \end{array} \right. \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &V(x,\alpha,\beta,\gamma,r_1,r_2,r_3)=d_6x^6+d_5x^5+d_4x^4+d_3x^3+d_2x^2+d_1x+d_0 \\ \notag \\ &\left\{ \begin{array}{l} d_6= \bbox[#FFFF00]{1}\\ d_5=-12 r_3\\ d_4=6 r_3 \beta+6 r_3 \alpha+58 r_3^2-6 r_2+ \bbox[#FFFF00]{18}\\ d_3=-48 r_3^2 \beta-48 r_3^2 \alpha-144 r_3^3+48 r_2 r_3-144 r_3\\ d_2=9 r_3^2 \beta^2+18 r_3^2 \alpha \beta+138 r_3^3 \beta+.....+414 r_3^2+9 r_2^2-54 r_2+ \bbox[#FFFF00]{81}\\ d_1=-36 r_3^3 \beta^2-72 r_3^3 \alpha \beta-168 r_3^4 \beta+...-36 r_2^2 r_3+216 r_2 r_3-324 r_3\\ d_0=4 r_3^3 \beta^3+27 r_3^2 \alpha^2 \beta^2-6 r_3^3 \alpha \beta^2+...-108 r_2+27 r_1^2-54 r_1+ \bbox[#FFFF00]{135}\\ \end{array} \right. \\ \notag \\ \end{align}
\begin{align} &V(x,\alpha,\beta,\gamma,r_1,r_2,r_3)= A(x,\alpha,\beta,\gamma,r_1,r_2,r_3)\cdot \bbox[#B0FFB0]{r_3} \notag \\ &\qquad +B(x,\alpha,\beta,\gamma,r_1,r_2)\cdot \bbox[#B0FFB0]{r_2} +C(x,\alpha,\beta,\gamma,r_1)\cdot \bbox[#B0FFB0]{r_1} \notag \\ &\qquad + \bbox[#FFFF00]{ \Bigl[ \ x^6+18x^4+81x^2+135 \ \Bigr] }\\ \notag \\ &\qquad \Downarrow \quad (mod \ \bbox[#B0FFB0]{r_3(\gamma)}) \ \rightarrow \ (mod \ \bbox[#B0FFB0]{r_2(\beta)}) \ \rightarrow \ (mod \ \bbox[#B0FFB0]{r_1(\alpha)}) \notag \\ \notag \\ &\therefore \ V(x,\alpha,\beta,\gamma,r_1,r_2,r_3)\equiv g_0(x)= x^6+18x^4+81x^2+135 \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)