\begin{align*} &f(x)=3x^3+3x+1 \quad \{\alpha,\beta,\gamma\}: \ roots \ of \ f(x)\\ &Primitive \ element \quad v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma \end{align*}
\begin{align*} v_{1}=\alpha+2\beta+3\gamma \qquad v_{2}=\alpha+2\gamma+3\beta \\ v_{3}=\beta+2\alpha+3\gamma \qquad v_{4}=\beta+2\gamma+3\alpha\\ v_{5}=\gamma+2\alpha+3\beta \qquad v_{6}=\gamma+2\beta+3\alpha \end{align*} \begin{align*} V(x)=&(x-v_{1})(x-v_{2})(x-v_{3})\\ \times&(x-v_{4})(x-v_{5})(x-v_{6}) \end{align*}
\[ Remainder \ Theorem \] \[ \qquad (1) \quad \alpha^3+3\alpha+1=0 \\ \qquad (2) \quad \beta^2+\alpha\beta+\alpha^2+3=0\\ \qquad (3) \quad \alpha+\beta +\gamma=0\]
\[ \quad divide \ V(x) \ by \ (1),(2),(3) \] \[ \qquad \qquad \Downarrow \] \[g_{0}(x)=x^6+18x^4+81x^2+135 \]
\[ \qquad g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \]
\begin{align*} \begin{pmatrix} 1\\v\\v^2\\v^3\\v^4\\v^5 \end{pmatrix} = \begin{pmatrix}1 & 0 & 0 & 0 & 0 & 0\\ 0 & -1 & -2 & 0 & 0 & 0\\ -3 & 0 & 0 & 3 & 3 & 0\\ 3 & 3 & 24 & 0 & 0 & -6\\ 9 & -9 & 0 & -45 & -45 & 0\\ -72 & -9 & -288 & 9 & -9 & 90\end{pmatrix} \begin{pmatrix} 1\\ \beta \\ \alpha \\ \alpha\beta \\ \alpha^2 \\ \alpha^2\beta \end{pmatrix} \end{align*}
\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)
\begin{align} \setCounter{10} f(x)&=x^3+3x+1 \notag \\ \notag \\ f(x)&=(x-\alpha)(x^2+\alpha x+\alpha^2+3)+(\alpha^3+3 \alpha +1) \notag \\ &=(x-\alpha)q_1(x)+r_1\\ \notag \\ q_1(x)&=(x-\beta)( x+\alpha+\beta )+(\beta^2+\alpha \beta +\alpha^2+3) \notag \\ &=(x-\beta)q_2(x)+r_2\\ \notag \\ q_2(x)&=(x-\gamma) \cdot 1+(\alpha+\beta+\gamma) \notag \\ &=(x-\gamma)q_3(x)+r_3\\ \end{align}
\begin{align} \{\alpha,\beta,\gamma\} \ &: \ roots \ of \ f(x)=x^3+3x+1 &\therefore \ f(\alpha)=0 \\ \{\beta,\gamma\} \ &: \ roots \ of \ q_1(x)= x^2+\alpha x+\alpha^2+3 &\therefore \ q_1(\beta)=0 \\ \{\gamma\} \ &: \ root \ of \ \ q_2(x)= x+\alpha+\beta &\therefore \ q_2(\gamma)=0 \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \quad f(\alpha)=0 \quad &\Rightarrow \quad r_1=\alpha^3+3 \alpha +1=0\\ \quad q_1(\beta)=0 \quad &\Rightarrow \quad r_2=\beta^2+\alpha \beta +\alpha^2+3=0\\ \quad q_2(\gamma)=0 \quad &\Rightarrow \quad r_3=\alpha+\beta+\gamma=0\\ \end{array} \right.\\ \end{align}
\begin{align} &V(x,\alpha,\beta,\gamma)= r_3 \cdot Q_1(x,\alpha,\beta,\gamma)+V_1(x,\alpha,\beta)\\ \end{align}
\begin{align} &\qquad V_1(x,\alpha,\beta)=-4 {{\beta }^{6}}-12 \alpha {{\beta }^{5}}+\left( 3 {{\alpha }^{2}}+9 {{x}^{2}}\right) {{\beta }^{4}} \notag \\ &\qquad +\left( 26 {{\alpha }^{3}}+18 {{x}^{2}} \alpha \right) {{\beta }^{3}} +\left( 3 {{\alpha }^{4}} +27 {{x}^{2}} {{\alpha }^{2}}-6 {{x}^{4}}\right) {{\beta }^{2}} \notag \\ &\qquad +\left( -12 {{\alpha }^{5}}+18 {{x}^{2}} {{\alpha }^{3}}-6 {{x}^{4}} \alpha \right) \beta -4 {{\alpha }^{6}}+9 {{x}^{2}} {{\alpha }^{4}}-6 {{x}^{4}} {{\alpha }^{2}}+{{x}^{6}} \\ \end{align}
\begin{align} & \quad V(x,\alpha,\beta,\gamma) \equiv V_1(x,\alpha,\beta) \quad( \ \because \ r_3=0 \ ) \\ \end{align}
\begin{align} &V_1(x,\alpha,\beta)= \ r_2 \cdot Q_2(x,\alpha,\beta)+V_2(x,\alpha)\\ \notag \\ & V_2(x,\alpha)=27 {{\alpha }^{6}}+162 {{\alpha }^{4}}+243 {{\alpha }^{2}}+{{x}^{6}}+18 {{x}^{4}}+81 {{x}^{2}}+108\\ \notag \\ &V_1(x,\alpha,\beta)\equiv V_2(x,\alpha) \quad( \ \because \ r_2=0 \ ) \end{align}
\begin{align} &V_2(x,\alpha)= \ r_1 \cdot Q_3(x,\alpha,\beta)+V_3(x)\\ &\qquad V_3(x)={{x}^{6}}+18 {{x}^{4}}+81 {{x}^{2}}+135 \\ \notag \\ &V_2(x,\alpha)\equiv V_3(x) \quad( \ \because \ r_1=0 \ )\\ \end{align}
\begin{align} V(x)&= V(x,\alpha,\beta,\gamma)= V_1(x,\alpha,\beta)\notag \\ &=V_2(x,\alpha)=V_3(x)={{x}^{6}}+18 {{x}^{4}}+81 {{x}^{2}}+135\\ \end{align}
\begin{align} g_0(x)=x^6+18x^4+81x^2+135\\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)