\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}
\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}
\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]
\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]
\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]
\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]
\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}
(覚書:冪根の実態は?)\begin{align} \setCounter{40} &t_1^2=(-v^3-9v)^2=v^6+18v^4+81v^2=-135 \quad (mod \ g_0(v))\\ \notag \\ &A_1=-135 \in F_0\\ \notag \\ &B_1=t_1^2-A_1=a_1^2-A_1 \quad \ \therefore \ t_1= a_1 \equiv \sqrt{A_1}=\sqrt{-135}\\ \notag \\ &\tilde{t_1}=a_1 \ \in F_0(a_1)=F_1 \end{align}
\begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1} \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} = \begin{bmatrix} t_0+\tilde{t_1}\\ t_0-\tilde{t_1} \end{bmatrix} = \begin{bmatrix} x^3+9x+a_1\\ x^3+9x-a_1 \end{bmatrix} \\ \notag \\ &\left\{ \begin{array}{l} h_0=x^3+9x-v^3-9v \\ h_1=x^3+9x+v^3+9v\\ \\ \{ \ h_0,h_1 \ \} \ \in F(v)[x] \\ \quad g_0(x)=h_0 \cdot h_1 \end{array} \right. \quad \implies \quad \left\{ \begin{array}{l} \tilde{h_0}=x^3+9x+a_1\\ \tilde{h_1}=x^3+9x-a_1\\ \\ \{ \ \tilde{h_0},\tilde{h_1} \ \} \ \in F_0(a_1)[x] \\ \quad g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \end{array} \right. \qquad \end{align}
\begin{align} g_1(x)&=x^3+9x+a_1 \ \in F_1[x]=F_0(a_1)[x]\\ \notag \\ &a_1 \equiv \sqrt{A_1}=\sqrt{-135} \\ \end{align}
体の拡大 | 添加数\(a_i\)の二項方程式 巡回拡大次数 | \(v\) の最小多項式 | ガロア群の縮小 組成列 |
---|---|---|---|
\(Q\) | \(g_0(x)=(x-v_1)(x-v_2)\) \( \quad =x^2+3x+3\) | \(C_2=\{\sigma_1,\sigma_2\}\) | |
\(\Downarrow\) | \(B_0=a_0^2+\frac{3}{4}=0\) \( |C_2|=p_0=2\) | \(\Downarrow \quad Step \ 0\) | \(\Downarrow\) |
\(Q(a_0)\) \(\ \ =Q(\omega)\) | \(g_1(x)=(x-v_1)\) \(\quad=x+\frac{3}{2}+a_0\) | \(e=\{\sigma_1\}\) | |
\(F_0=Q(\omega)\) | \(g_0(x)=(x-v_1)....(x-v_6) \\ \quad =x^6+18x^4+81x^2+135 \) | \( \quad S_3=\{\sigma_1,..,\sigma_6\} \quad \) | |
\(\Downarrow\) | \( B_1=a_1^2+135=0\) \(|S_3/A_3|=p_1=2\) | \(\Downarrow \quad Step \ 1 \) | \(\Downarrow \) |
\(F_1=F_0(a_1)\) | \(g_1(x)=(x-v_1)(x-v_4)(x-v_5)\\ \quad =x^3+9x+a_1\) | \( \quad A_3=\{\sigma_1,\sigma_4,\sigma_5\} \quad \) | |
\(\Downarrow \) | \(B_2=a_2^3-\frac{6 \ \omega+a_1+3}{2}=0\) \(|A_3|=p_2=3\) | \(\Downarrow \quad Step \ 2 \) | \(\Downarrow \) |
\(F_2=F_1(a_2)\) | \(g_2(x)=(x-v_1)\\=x+a_2^2\left(-\frac{\omega}{3}+\frac{a_1}{18}-\frac{1}{6}\right)+a_2\) | \( \quad e=\{\sigma_1\} \quad \) |
巡回拡大とガロア群 | 二項方程式 | 最小多項式と因子 | 最小多項式 |
---|---|---|---|
\(Gal(Q(a_0)/Q)= C_2 \) \(C_2=\{\sigma_1,\sigma_2\}\) |
\(B_0=a_0^2-A_0\) \(A_0=-\frac{3}{4}\) |
\(g_0(x)=h_0\cdot h_1\) \(h_0=(x-v_1)\) \(h_1=(x-v_2)\) |
\(g_0(x)=\tilde {h_0} \cdot \tilde{h_1}\) \(\Downarrow\) \(g_1(x)=\tilde {h_0}\) |
\(Gal(F_0(a_1)/F_0)= S_3/A_3 \) \(S_3/A_3=\{\rho_1,\rho_2\}\) \(\rho_1=\{\sigma_1,\sigma_4,\sigma_5\}\) \(\rho_2=\{\sigma_2,\sigma_3,\sigma_6\}\) |
\(B_1=a_1^2-A_1\) \(A_1=-135\) |
\(g_0(x)=h_0\cdot h_1\) \(h_0=(x-v_1)(x-v_4)(x-v_5)\) \(h_1=(x-v_2)(x-v_3)(x-v_6)\) |
\(g_0(x)=\tilde {h_0} \cdot \tilde{h_1}\) \(\Downarrow\) \(g_1(x)=\tilde {h_0}\) |
\(Gal(F_1(a_2)/F_1)= A_3 \) \(A_3=\{\sigma_1,\sigma_4,\sigma_5\}\) |
\(B_2=a_2^3-A_2\) \(A_2=\frac{6 \ \omega+a_1+3}{2}\) |
\(g_1(x)=h_0 \cdot h_1 \cdot h_2\) \(h_0=(x-v_1)\) \(h_1=(x-v_4)\) \(h_2=(x-v_5)\) |
\(g_1(x)=\tilde {h_0} \cdot \tilde{h_1} \cdot \tilde{h_2}\) \(\Downarrow\) \(g_2(x)=\tilde {h_0}\) |
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)