ガロア理論を使って方程式を解いた事ありますか?

Home

【例題1】 EX1-RT1  EX1-RT2  EX1-RT3  EX1-RT4   ガロア群
         \(f(x)=x^3+3x+1\)           \(S_3\)
【例題2】 EX2  \(f(x)=x^3-3x+1\)           \(A_3\)
【例題3】 EX3  \(f(x)=x^5-10x^3+5x^2+10x+1\)  \( \ \ C_5\)
【例題4】 EX4  \(f(x)=x^4+4x+2\)           \(S_4\)


    【補足1】 APX1 代数体上での因数分解
    【補足2】 APX2 1の原始冪乗根 \("\omega \ and \ \zeta_5"\) の計算
    【補足3】 APX3 巡回多項式と円分方程式 \(\Phi_{17}(x)\)
    【補足4】 APX4 添加数生成時の計算のポイント
    【補足5】 APX5 \(x^3-2=0, \ x^5-3=0\) に関して
    【補足6】 APX6 拡大体 \(F_i\) での計算の注意点

【例題1】の解法手順の後半 RT4

 EX1-RT1-6   EX1-RT2-6   EX1-RT3-5

\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}

\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}

流れ
EX1-RT4-1

\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}

流れ
EX1-RT4-2

\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]

\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]

流れ
EX1-RT4-3

\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]

\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]

流れ
EX1-RT4-4

\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}

(覚書:冪根の実態は?)
                                      Home   

RT4-3 \(F_2/F_1\)の計算: 最小多項式\(g_2(x)\)を求める(続き)

先ず \(\{ \ t_1^3, \ t_2^3 \ \}\) を、式(56)を使って計算してみます。

\begin{align} \setCounter{63} t_1^3&=\left(-\omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v}{9}+4) -\frac{{{v}^{2}}}{3}+\frac{{a_1} v}{18}-\frac{v}{2}-2 \right)^3 \notag \\ &=3\omega +\frac{{a_1+3}}{2} \qquad (mod \ g_1(v)),(mod \ B_1), (mod \ \varOmega) \\ t_2^3&=\left( \omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v }{9}+4 ) +\frac{{{v}^{2}}}{3}-\frac{{a_1} v}{18}-\frac{v}{2}+2 \right)^3 \notag \\ &=-3\omega +\frac{{a_1-3}}{2} \qquad (mod \ g_1(v)),(mod \ B_1) ,(mod \ \varOmega) \end{align}

上式(64)(65)より \(\{t_1^3, t_2^3 \}\) は、\(F_1\) の"数"で表される事が判りました。
次に \(t_1 \cdot t_2\) を計算してみます。

\begin{align} t_1 \cdot t_2&=\left(-\omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v}{9}+4) -\frac{{{v}^{2}}}{3}+\frac{{a_1} v}{18}-\frac{v}{2}-2 \right) \notag \\ &\qquad \times \left( \omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v }{9}+4 ) +\frac{{{v}^{2}}}{3}-\frac{{a_1} v}{18}-\frac{v}{2}+2 \right) \\ &= \quad ........\notag \\ \notag \\ &=\frac{\left( {{v}^{2}}+12\right)(\omega^2+ \omega) +{{v}^{2}}+3}{3} \qquad (mod \ g_1(v)), (mod \ B_1) \\ &=-3 \ \in F_0 \qquad \qquad (mod \ \varOmega) \end{align}

式(64)(65)(68)の計算は複雑そうですが、やっている事は非常に単純で、 \(\{t_1^3, t_2^3,t_1 \cdot t_2 \}\) を展開して、最後に \([ \ g_1(v) \rightarrow B_1 \rightarrow \varOmega \ ]\) と 順に剰余を取ってゆけば最後まで到達できます。
ここ迄にガロア群\(A_3\)での変換で、不変なものが幾つか得られたので整理します。
ここで、式(69)で \(t_1^3\) を \(A_2\) とします。

\begin{align} &t_1^3=3\omega +\frac{{a_1+3}}{2} \equiv A_2 \\ &t_2^3=-3\omega +\frac{{a_1-3}}{2} \\ &t_1 \cdot t_2=-3 \\ \notag \\ &\{ \ t_1^3, \ t_2^3, \ t_1t_2 \ \} \quad \in \ F_1 \end{align}

ここで前節と同様に2項方程式 \(B_2=0\) を考えます。しかし今回は3次方程式となります。

\begin{align} &B_2=t_1^3-A_2=a_2^3-A_2 \qquad \therefore t_1=\sqrt[3]{A_2}\equiv a_2\\ \notag \\ & \tilde{t_1}=a_2 \quad \in F_1(a_2)=F_2\\ \end{align}

式(73)に示すように、\(\sqrt[3]{A_2}\) を \(a_2\) として、これを体\(F_1\)に添加して、拡大体 \(F_1(a_2)=F_2\) を 構成します。また、\(a_2\)は\(F_2\)の数なので、\(t_1\) を \(t_1\) でなく、敢えて \(\tilde{t_1}\) と表現を 変えているのは、前節同様です。
但し2次の巡回群\(S_3/A_3\)の時と違う点があります。それは \(t_2\) を \(a_2\) を使って表現する 必要があります。添加するのは \(a_2\) だけで十分だからです。
その為に、式(69)(71)(73)を使います。以下の式の変形をご覧ください

\begin{align} t_2=\frac{t_1 \cdot t_2}{t_1}=\frac{t_1^2\cdot (t_1t_2)}{t_1^2\cdot t_1} =\frac{t_1^2\cdot (t_1t_2)}{t_1^3}=\frac{a_1^2 \cdot (-3)}{A_2} =-\frac{3a_2^2}{A_2} \end{align}

式(75)の問題は \(t_2\) の分母に \(A_2\) がある事です。そこで \(A_2^{-1}\) の多項式表現を 求める必要があります。 実際には、\(A_2^{-1}\)を式(76)の様に表現できると仮定して、 \([ \ A_2 \cdot A_2^{-1}=1 \ ]\) が成り立つように、式(76)の係数 \(\{d_0,d_1,d_2,d_3\}\) を求める計算をしてみます。

\begin{align} A_2^{-1}&=d_0+d_1\omega+d_2 a_1+d_3 \omega a_1\\ \notag \\ A_2 \cdot A_2^{-1}&=\left(3\omega +\frac{{a_1+3}}{2} \right) \cdot \left(d_0+d_1\omega+d_2 a_1+d_3 \omega a_1\right) \notag \\ &= \quad .......\quad (mod \ g_1(v)), \ (mod \ B_1) ,(mod \ \varOmega) \notag \\ &=D_0+\omega D_1+ a_1 D_2+ \omega a_1 D_3 \\ \end{align}

\begin{align} &\left\{ \begin{array}{l} D_0=\left( -\frac{135 {d_2}}{2}-3 {d_1}+\frac{3 {d_0}}{2} \right) \qquad D_1=\left(-\frac{135 {d_3}}{2}-\frac{3 {d_1}}{2}+3 {d_0} \right) \\ D_2=\left(-3 {d_3}+\frac{3 {d_2}}{2}+\frac{{d_0}}{2}\right) \qquad D_3=\left(-\frac{3 {d_3}}{2}+3 {d_2}+\frac{{d_1}}{2} \right) \end{array} \right. \\ \notag \\ &A_2 \cdot A_2^{-1}=1 \Rightarrow \{D_0=1, D_1=D_2=D_3=0\} \\ \notag \\ &\therefore \quad \left[ \ d_0=\frac{1}{18}, \ d_1=\frac{1}{9}, \ d_2=-\frac{1}{54}, \ d_3=0 \ \right]\\ \notag \\ &\therefore \quad A_2^{-1}=\frac{1}{18}+\frac{\omega}{9}-\frac{a_1}{54} \\ \end{align}

以上の様に\(A_2^{-1}\) を求める事が出来ましたので、式(75)に\(A_2^{-1}\) を 代入すれば、\(t_2\) も \(\{\omega,a_1,a_2\}\) を使って以下の様に表現できるようになります。
ここで、\(\{t_0,t_1,t_2\}\) をまとめると以下の様になります。

\begin{align} \left\{ \begin{array}{l} t_0=x \\ t_1=a_2 \\ t_2=-( \ 3 \ a_2^2 \ )\cdot A_2^{-1}=a_2^2\left(-\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \\ \end{array} \right. \\ \end{align}

上記の様に、\(\{t_1,t_2\}\) は\(F_1(a_2)=F_2\)の数として表現できる事になるので、 今後チルダを付けて、\(\{\tilde{t_1},\tilde{t_2}\}\) と表記します。 こうして求められた \(\{ \ t_0, \tilde{t_1},\tilde{t_2}\}\) を使って、式(50)の逆変換である式(52)を計算する 事により、以下の様に \(\{ \ \tilde{h_0}, \tilde{h_1},\tilde{h_2} \ \}\) を求める事が出来ます。

\begin{align} \begin{bmatrix} \tilde{h_0} \\ \tilde{h_0} \\ \tilde{h_0} \end{bmatrix} &= \begin{bmatrix} 1&1&1 \\ 1&\omega^2&\omega\\ 1&\omega&\omega^2 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \\ \tilde{t_2} \end{bmatrix} = \begin{bmatrix} t_0+\tilde{t_1}+\tilde{t_2}\\ t_0+\omega^2 \tilde{t_1}+\omega \tilde{t_2}\\ t_0+\omega \tilde{t_1}+\omega-2 \tilde{t_2} \end{bmatrix} \notag \\ \notag \\ &= \begin{bmatrix} x+a_2+a_2^2\left(-\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \\ x+a_2\omega^2+a_2^2\omega\left(-\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \\ x+a_2\omega+a_2^2\omega^2\left(-\frac{\omega}{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \end{bmatrix}\\ \end{align}

\(\{ \ h_0,h_1,h_2 \ \}\) は、式(54)で示す様に \(F_1(v)\) での多項式ですが、 \(a_1,a_2\) が添加された 拡大体 \(F_2=F_1(a_2)=F_0(a_1,a_2)\) での世界では、 \(\{ \ \tilde{h_0},\tilde{h_1},\tilde{h_2} \ \} \) は、 式(83)の様に \(v\) を使わない多項式表現とする事が出来ました。 また \(\tilde{h_0}\) はもともと\((x-v)\)を因子に持っていたので、 拡大体 \(F_2\) での \(v\) の最小多項式は \(g_2(x)=\tilde{h_0}\) となります。 この節の結論は以下の通りです。

\begin{align} g_2(x)=&x+a_2+a_2^2\left(- \ \frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \ \in F_2[x]=F_1(a_2)[x]\\ &a_1=\sqrt{A_1}=\sqrt{-135} \qquad a_2=\sqrt[3]{A_2}=\sqrt[3]{3\omega+\frac{a_1+3}{2}} \end{align}


次ページに続く


Profile
  Name:scruta   Daily life:mowing             

Revision history
  1st upload: 2023/06/17
  revision2 : 2023/07/27


maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。

   download pageへ

Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)
  mailaddress