数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

【第3章】凄く疲れます! 巡回拡大満載!

\( \quad \)

\(\qquad \qquad \qquad f(x)=x^4+4x+2 \qquad Galois \ Group:S_4\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)

【3-3】 多項式 \(V(x), \ P_{\alpha}(x), \ P_{\beta}(x), \ P_{\gamma}(x), \ P_{\delta}(x)\) の導入

\(\nextSection\)
いつもの様に5つの多項式を導入します。\(V(x)\) は「最小多項式」と呼ばれるものになります。
\(\{P_{\alpha}(x), P_{\beta}(x), P_{\gamma}(x), P_{\delta}(x)\}\) は、根 \(\{ \ \alpha,\beta,\gamma,\delta \ \}\) を \(v\) で表現する為の多項式です。
今回は第2章と全く同じ計算方法で5つの多項式を、基礎体 \(F_0\) 上の多項式に変換してみます。

\begin{align} V(x)&\equiv \displaystyle \prod_{i=1}^{24}\sigma_i(x-v) \\ P_\alpha(x)&\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^{24} \sigma_i(\frac{\alpha }{x-v}) \ \Bigr] , \ P_{\beta}(x)\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^{24} \sigma_i(\frac{\beta }{x-v}) \ \Bigr] \\ P_{\gamma}(x)&\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^{24} \sigma_i(\frac{\gamma }{x-v}) \ \Bigr] , \ P_{\delta}(x)\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^{24} \sigma_i(\frac{\delta }{x-v}) \ \Bigr] \\ \end{align}


\(V(x)\) を例にして計算方法を説明します。(3.1)の \(v_i\) に(2.3)を代入して展開します。

\begin{align} &V(x)=(x-v_{1})(x-v_{2})(x-v_{3}).....(x-v_{22})(x-v_{23})(x-v_{24}) \\ &\qquad \Downarrow \notag \\ &V(x,\alpha,\beta,\gamma,\delta)= x^{24}-60(\delta +\gamma +\beta +\alpha )x^{23} +......\notag \\ \end{align}

\(V(x,\alpha,\beta,\gamma,\delta)\) は上記の様に非常に複雑な\(x\)の24次多項式となってしまいます。
しかし、第2章の計算方式と同様に、 \(V(x,\alpha,\beta,\gamma,\delta)\) を(1.7)で計算しておいた \(\{ r_4(\delta),\ r_3(\gamma),\ r_2(\beta), \ r_1(\alpha) \}\) を使って、この順で剰余を取ると \(F_0\) 上の多項式となります。

\begin{align} V(x)&=x^{24}-160x^{20}+5440x^{18}+30080x^{16}+739840x^{14} \notag \\ &+25400832x^{12}-29593600x^{10}+1520414720x^8 \notag \\ &+35532554240x^6+411134296064x^4+700091596800x^2 \notag \\ &+4691625312256 \qquad \in \ F_0[x]\\ \end{align}


\(V(x,\alpha,\beta,\gamma,\delta)\) が一気に \(F_0\) 上の多項式になってしまうのは驚きです。
因みに(3.6)の \(V(x)\) は「ガロア分解式」" Galois resolvent " と呼ばれているそうです。

(3.2)(3.3)の \(\{ P_\alpha(x),P_\beta(x),P_\gamma(x),P_\delta(x)\}\) も \(V(x)\) と同様に計算します。
例として \( P_\alpha(x)\) の式変形を以下に示します。

\begin{align} &P_\alpha(x)\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^{24} \sigma_i(\frac{\alpha }{x-v}) \ \Bigr] \notag \\ &\qquad \Downarrow \notag \\ &P_\alpha(x,\alpha,\beta,\gamma,\delta)=c_{23}x^{23}+c_{22}x^{22}+c_{21}x^{21}+....+c_{3}x^{3}+c_{2}x^{2}+c_{1}x+c_0 \notag \\ \notag \\ &c_{23}=6(\alpha+\beta+\gamma+\delta) \notag \\ &c_{22}=-6 \left( 59\delta^2+114\gamma\delta+114\beta\delta+114\alpha\delta+59\gamma^2 \right. \notag \\ &\qquad \left. +114\beta\gamma+114\alpha\gamma+59\beta^2+114\alpha\beta+59\alpha^2 \right) \notag \\ &c_{21}=2 \left(4953\delta^3+14297\gamma\delta^2+14297\beta\delta^2+14297\alpha\delta^2+14297\gamma^2\delta \right. \notag \\ &\qquad +28056\beta\gamma\delta+28056\alpha\gamma\delta+14297\beta^2\delta+28056\alpha\beta\delta+14297\alpha^2\delta \notag \\ &\qquad +4953\gamma^3+14297\beta\gamma^2+14297\alpha\gamma^2+14297\beta^2\gamma+28056\alpha\beta\gamma \notag \\ &\qquad \left. +14297\alpha^2\gamma+4953\beta^3+14297\alpha\beta^2+14297\alpha^2\beta+4953\alpha^3 \right) \notag \\ & \qquad \qquad ......... \notag \\ \notag \\ &\qquad \Downarrow \quad \bbox[#FFFF00]{ mod(r_4(\delta)),\ mod(r_3(\gamma)),\ mod(r_2(\beta)), \ mod(r_1(\alpha)) } \notag \\ \notag \\ &c_{23}=0 \quad c_{22}=0 \quad c_{21}=-192 \quad ..... \notag \\ \end{align}


上記の式変形では、係数 \(c_i\) ごとに(1.7) \(\{ r_4(\delta),\ r_3(\gamma),\ r_2(\beta), \ r_1(\alpha) \}\) の剰余計算をしているように 記述しましたが、実際には \(P_\alpha(x,\alpha,\beta,\gamma,\delta)\) 全体を一気に(1.7)で剰余して \( P_\alpha(x)\) を得ております。

\(\{ P_\alpha(x),P_\beta(x),P_\gamma(x),P_\delta(x)\}\) の計算結果は以下の様になります。

\begin{align} P_\alpha(x)&=-192x^{21}+13824x^{18}-1024x^{17}+30720x^{16}-983040x^{15} \notag \\ &+2433024x^{14}-2768896x^{13}+105713664x^{12}-120504320x^{11} \notag \\ &-35880960x^{10}-1756086272x^9+9626910720x^8-19995033600x^7 \notag \\ &+176799350784x^6 -301266108416x^5+2423048110080x^4 \notag \\ &-1707917967360x^3+3237850644480x^2 \notag \\ &-2155349016576x+31486733451264 \\ \notag \\ P_\beta(x)&=192x^{21}-640x^{20}-8832x^{18}+1024x^{17}+148480x^{16}+983040x^{15} \notag \\ &+99328x^{14}+2768896x^{13}-12331008x^{12}+120504320x^{11} \notag \\ &-306667520x^{10}+1756086272x^9-4554096640x^8+19995033600x^7 \notag \\ &+109187923968x^6+301266108416x^5+953541591040x^4 \notag \\ &+1707917967360x^3+5688463196160x^2 \notag \\ &+2155349016576x+18138807140352 \\ \notag \\ P_\gamma(x)&=192x^{21}+640x^{20}+8832x^{18}+1024x^{17}-148480x^{16}+983040x^{15}\notag \\ &-99328x^{14}+2768896x^{13}+12331008x^{12}+120504320x^{11} \notag \\ &+306667520x^{10}+1756086272x^{9}+4554096640x^{8}+19995033600x^{7} \notag \\ &-109187923968x^{6}+301266108416x^{5}-953541591040x^{4} \notag \\ &+1707917967360x^{3}-5688463196160x^{2} \notag \\ &+2155349016576x-18138807140352 \\ \notag \\ P_\delta(x)&=-192x^{21}-13824x^{18}-1024x^{17}-30720x^{16}-983040x^{15} \notag \\ &-2433024x^{14}-2768896x^{13}-105713664x^{12}-120504320x^{11} \notag \\ &+35880960x^{10}-1756086272x^9-9626910720x^8-19995033600x^7 \notag \\ &-176799350784x^6-301266108416x^5-2423048110080x^4 \notag \\ &-1707917967360x^3-3237850644480x^2 \notag \\ &-2155349016576x-31486733451264 \\ \end{align}


\(\quad \)
home \(\quad \)