数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

【第3章】凄く疲れます! 巡回拡大満載!

\( \quad \)

\(\qquad \qquad \qquad f(x)=x^4+4x+2 \qquad Galois \ Group:S_4\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

【3-15】 \(f(x)\) の根の計算

\(\nextSection\)
前節で漸く \(v\) の最小多項式 \(g_4(x)\) が求まりました。 この \(g_4(x)\) は \(x\) の一次式なので、 \(g_4(x)=0\) の根は簡単に計算出来て、その根が最終的に求める \(v\) の値となります。

\begin{align} &g_4(x)= x+\frac{{a_3}}{2}+{a_4} \\ &g_4(x)=0 \quad \Longrightarrow \quad \therefore \ v=-\frac{{a_3}}{2}-{a_4} \\ \end{align}

この \(v\) の値を、(4.6-9)に代入すれば \(f(x)\) の4根が求まる事となります。 具体的計算を示してみます。(15.3)の \(\alpha\) は \(v\) の多項式として表現されています。
代数計算ソフトmaximaを使うと下記のような命令で \(\alpha\) を計算する事が出来ます。 (15.4)では、(15.5)の \(\alpha\) を \(g_4(v)\) で剰余を取る計算です。\(g_4(v)\) は \(v\) の1次式ですから、剰余を取るという事は、(15.3)の \(v\) に(15.2)の \(v\) の値を代入をする事と等価です。
(15.4)以降は、巡回拡大を規定する4つの2項多項式を使って、剰余をとる計算になっています。 最後に(15.5)の様に \(\Omega\) で剰余を取ると、\(\alpha\) の最終結果が(15.6)で得る事が出来ます。

\begin{align} &\alpha=\frac{801167701943012874015343807 }{10126546386824616812436636833146824818688}{{v}^{23}}\notag \\ &\quad +\frac{51207699710669004924125}{199474971178044691573821786887815168} {{v}^{22}} \notag \\ \notag \\ &\qquad .............................. \notag \\ \notag \\ &\quad -\frac{1279063375083309131586881879157101 }{11886064249859873624873982160300416}v \notag \\ &\quad -\frac{2718803338720300088760700554765}{3043746508454051079922817793088} \\ \notag \\ \end{align}

\begin{align} & \qquad \Downarrow \notag \\ \notag \\ &\alpha:remainder(\alpha,g_4(v),v)$ & &\leftarrow \quad ( \ mod \ g_4(v) \ ) \\ &\alpha:remainder(\alpha,B_4,a_4)$ & &\leftarrow \quad ( \ mod \ B_4(a_4) \ ) \notag \\ &\alpha:remainder(\alpha,B_3,a_3)$ & &\leftarrow \quad ( \ mod \ B_3(a_3) \ ) \notag \\ &\alpha:remainder(\alpha,B_2,a_2)$ & &\leftarrow \quad ( \ mod \ B_2(a_2) \ ) \notag \\ &\alpha:remainder(\alpha,B_1,a_1)$ & &\leftarrow \quad ( \ mod \ B_1(a_1) \ ) \notag \\ &\alpha:remainder(\alpha,Ω,ω); & &\leftarrow \quad ( \ mod \ \Omega \ ) \\ \end{align}

\begin{align} &\Rightarrow \ \frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}+20766720 {a_3} \Bigr] \\ \end{align}

他の3根も全く同様に計算出来ます。以下が \(f(x)\) の4根の最終結果となります。

\begin{align} &f(x)=x^4+4x+2 =(x-\alpha)(x-\beta)(x \ -\gamma)(x \ -\delta) \\ \end{align}

\begin{align} \notag \\ &\alpha=\frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}+20766720 {a_3} \Bigr] \\ \notag \\ &\beta=-\frac{1}{166133760}\Bigl[ \left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}-20766720 {a_3} \Bigr] \\ \notag \\ &\gamma=-\frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}-83066880 {a_4}+20766720 {a_3} \Bigr] \\ \notag \\ &\delta=\frac{1}{166133760}\Bigl[ \left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}-83066880 {a_4}-20766720 {a_3} \Bigr] \\ \end{align}



今まで計算してきた巡回拡大を下図Fig.3-6で振り返ってみました。それぞれの巡回拡大で付随する 2項方程式もまとめてみました。

解法の手順

\begin{align} &\left\{ \begin{array}{l} \varOmega = \omega^2+ \omega +1 =0 \\ B_1(x)=x^2-A_1=0 \qquad a_1=\sqrt{A_1} \\ B_2(x)=x^3-A_2=0 \qquad a_2=\sqrt[3]{A_2}\\ B_3(x)=x^2-A_3=0 \qquad a_3=\sqrt{A_3} \\ B_4(x)=x^2-A_4=0 \qquad a_4=\sqrt{A_4} \\ \end{array} \right. \\ \end{align}


\begin{align} & A_1=-17510400 \\ & A_2= \frac{14 {a_1} \omega }{27}+2304 \omega +\frac{89 {a_1}}{135}-1088 \notag \\ & A_3=\frac{23 {a_1} {{a}_{2}^{2}} \omega }{324480}+\frac{63 {{a}_{2}^{2}} \omega }{338} -\frac{8 {a_2} \omega }{13}+\frac{{a_1} {{a}_{2}^{2}}}{324480} +\frac{135 {{a}_{2}^{2}}}{338}-\frac{32 {a_2}}{13} \notag \\ & A_4= -\frac{11 {a_1} {{a}_{2}^{2}} \omega }{2595840} +\frac{9 {{a}_{2}^{2}} \omega }{676}+\frac{2 {a_2} \omega }{13} -\frac{23 {a_1} {{a}_{2}^{2}}}{5191680}-\frac{63 {{a}_{2}^{2}}}{5408}+\frac{3 {a_2}}{26} \notag \\ \end{align}


\begin{align} g_0(x)=& \ x^{24}-160x^{20}++5440x^{18}+30080x^{16}+739840x^{14} \notag \\ & +25400832x^{12} -29593600x^{10}+1520414720x^8 \notag \\ &+35532554240x^6 +411134296064x^4+700091596800x^2 \notag \\ & +4691625312256\\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ g_4(x)=&\ x+\frac{{a_3}}{2}+{a_4} \qquad \therefore \ v=-\frac{{a_3}}{2}-{a_4} \\ \end{align}


以上がガロア理論を使って方程式を解く計算手順でした。(疲れました)

\(\quad \)
home \(\quad \)