数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} &Gal(F_4/F_3)=N/e \cong C_2 \qquad C_2 =\{\rho_{1},\rho_{8}\} \notag \\ \end{align}
【step1】LRT(Lagrange Resolvent transformation)
\begin{align}
& h_0=(x-v_1) \\
& h_1=(x-v_8) \notag \\
\notag \\
& \begin{bmatrix}
t_0 \\
t_1
\end{bmatrix}
=\frac{1}{2}
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
h_0 \\
h_1
\end{bmatrix}
\qquad ( \ t_1:Lagrange \ resolvent \ )\\
\end{align}
\begin{align} &\left\{ \begin{array}{l} h_0=x-v_1\\ h_1=x-v_8\\ \end{array} \right. \notag \\ \end{align}
\( \ \) | \(\rho_i(v_1)\) | \(\rho_i(v_8)\) |
---|---|---|
\(\rho_1\) | \(v_{1}\) | \(v_{8}\) |
\(\rho_8\) | \(v_{8}\) | \(v_{1}\) |
\( \ \) | \(\rho_j(h_0)\) | \(\rho_j(h_1)\) |
---|---|---|
\(\rho_1\) | \(h_0\) | \(h_1\) |
\(\rho_8\) | \(h_1\) | \(h_0\) |
\begin{align} &\left\{ \begin{array}{l} t_0=\frac{1}{2}(h_0+h_1)=x-(v_1+v_8)\\ t_1=\frac{1}{2}(h_0-h_1)=-(v_1-v_8)\\ \end{array} \right.\\ \end{align}
\( \ \) | \(\rho_j(v_1+v_8)\) | \(\rho_j(v_1-v_8)\) |
---|---|---|
\(\rho_1\) | \(v_1+v_8\) | \(v_1-v_8\) |
\(\rho_8\) | \(v_8+v_1\) | \(-(v_1-v_8)\) |
\( \ \) | \(\rho_j(t_0)\) | \(\rho_j(t_1)\) | \(\rho_j(t_1 ^2)\) |
---|---|---|---|
\(\rho_1\) | \(t_0\) | \(t_1\) | \(t_1^2\) |
\(\rho_8\) | \(t_0\) | \(-t_1\) | \(t_1^2\) |
\begin{align} t_0&= x+\frac{a_3}{2} \quad \in F_3[x]\\ t_1&=-v-\frac{a_3}{2} \quad \in F_3(v) \\ \end{align}
\begin{align} & \bbox[#FFFF00]{t_1^2}=-\frac{11 {a_1} {{a}_{2}^{2}} \omega }{2595840}+\frac{9 {{a}_{2}^{2}} \omega }{676} +\frac{2 {a_2} \omega }{13}-\frac{23 {a_1} {{a}_{2}^{2}}}{5191680}-\frac{63 {{a}_{2}^{2}}}{5408} +\frac{3 {a_2}}{26} \equiv \bbox[#FFFF00]{A_4} \ \in \ F_2\\ \notag \\ &B_4(x) \equiv x^2-A_4=0 \quad a_4 \equiv \sqrt{A_4} \quad \Rightarrow \quad \bbox[#FFFF00]{ F_4 \equiv F_3(a_4) } \\ &t_1 \quad \Rightarrow \quad \tilde{t_1}=a_4 \ \in \ F_4\\ \end{align}
【step2】二項方程式 \(B_4(x)=0\) と新たな添加数 \(a_4\) の生成
\begin{align}
t_1=-v-\frac{a_3}{2} \ \in F_3(v)
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
B_4(x)=x^2-A_4=0 \\
a_4=\sqrt {A_4} \ \in F_3(a_4) \equiv F_4\\
\\
\tilde{t_1}=a_4 \ \in F_4 \\
\end{array}
\right. \notag \\
\end{align}
【step3】ILRT(Inverse Lagrange Resolvent transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1 }
\end{bmatrix}
=
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1}
\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_3(x)=\tilde{h_0} \cdot \tilde{h_1} \\
g_4(x) \equiv \tilde{h_0} \ \in \ F_4[x]
\end{array}
\right. \\
\end{align}
\begin{align} &\tilde{h_0}=x+\frac{a_3}{2}+a_4 \equiv g_4(x) \\ \notag \\ &B_4(x)=x^2-A_4=0 \quad a_4=\sqrt{A_4} \quad \Rightarrow \quad F_4 \equiv F_3(a_4)\\ \notag \\ &A_4=-\frac{11 {a_1} {{a}_{2}^{2}} \omega }{2595840}+\frac{9 {{a}_{2}^{2}} \omega }{676} +\frac{2 {a_2} \omega }{13}-\frac{23 {a_1} {{a}_{2}^{2}}}{5191680}-\frac{63 {{a}_{2}^{2}}}{5408} +\frac{3 {a_2}}{26} \\ \end{align}