数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} & deg(t_1)=m, \quad deg(t_2)=n \\ & t_1=ce_m \times \biggl( x^m+\displaystyle \sum_{i=0}^{m-1} \frac{ce_i}{ce_m}x^i\biggr) =ce_m \times q_1(x) \quad (ce_m\neq 0) \\ & t_2=ck_n \times \biggl( x^n+\displaystyle \sum_{j=0}^{n-1} \frac{ck_j}{ck_n}x^j\biggr) =ck_n \times q_2(x) \quad (ck_n\neq 0) \\ \end{align}
\begin{align} \notag \\ &\kappa_1 \biggl( \frac{ce_i}{ce_m}\biggr)= \frac{ce_i}{ce_m}, & &\kappa_2 \biggl( \frac{ce_i}{ce_m}\biggr)= \frac{\omega^2 ce_i}{\omega^2 ce_m}=\frac{ce_i}{ce_m}, & &\kappa_3 \biggl( \frac{ce_i}{ce_m}\biggr)= \frac{\omega ce_i}{\omega ce_m}=\frac{ce_i}{ce_m} \\ &\kappa_1 \biggl( \frac{ck_j}{ce_n}\biggr)= \frac{ce_j}{ce_n}, & &\kappa_2 \biggl( \frac{ck_j}{ce_n}\biggr)= \frac{\omega ce_j}{\omega ce_m}=\frac{ce_j}{ce_m}, & &\kappa_3 \biggl( \frac{ck_j}{ce_n}\biggr)= \frac{\omega^2 ce_j}{\omega^2 ce_m}=\frac{ce_j}{ce_m} \notag \\ \notag \\ \end{align}
\begin{align} &\therefore \ \biggl( \frac{ce_i}{ce_m}\biggr),\biggl( \frac{ck_j}{ck_n}\biggr) \ \in F_1 \quad \Rightarrow \quad q_1(x), \ \ q_2(x) \in F_1[x] \\ \end{align}
\begin{align} & t_0=x^4+112 \\ & t_1=\Biggl[\frac{176356098785 {a_1} {{v}^{10}} \omega }{26343508540135700992}+...+\frac{27924690836995920}{2708008690392239} \Biggr]x^2 +.... \\ & t_2=\Biggl[ -\frac{176356098785 {a_1} {{v}^{10}} \omega }{26343508540135700992}+...-\frac{193463308578480}{2708008690392239} \Biggr]x^2 +.... \\ \end{align}
【step2】二項方程式 \(B_2(x)=0\) と新たな添加数 \(a_2\) の生成
\begin{align}
&\left\{
\begin{array}{l}
t_1=ce_m \cdot q_1(x) \ \in F_1(v)[x]\\
t_2=ck_m \cdot q_2(x) \ \in F_1(v)[x]\\
\\
ce_m, \ ck_m \ \in F_1(v) \\
q_1(x), \ q_2(x) \ \in F_1[x]\\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_2 \cdot q_1(x) \ \in F_2[x] \\
\tilde{t_2}=b_2 \cdot q_2(x) \ \in F_2[x] \\
\\
B_2(x)=x^3-A_2=0 \\
a_2=\sqrt[3] {A_2} \ \in F_1(a_2) \equiv F_2\\
\end{array}
\right. \notag \\
\end{align}
\begin{align} ce_m=&\Biggl[\frac{176356098785 {a_1} {{v}^{10}} \omega }{26343508540135700992} +\frac{103314391395 {{v}^{10}} \omega }{5416017380784478}+.....+\frac{27924690836995920}{2708008690392239} \Biggr] \\ ck_m=&\Biggl[ -\frac{176356098785 {a_1} {{v}^{10}} \omega }{26343508540135700992} -\frac{103314391395 {{v}^{10}} \omega }{5416017380784478}+.....-\frac{193463308578480}{2708008690392239} \Biggr] \notag \\ ce_m^{-1}=&\Biggl[-\frac{529068296355 {a_1} {{v}^{10}} \omega }{10958899552696451612672} -\frac{309943174185 {{v}^{10}} \omega }{2253063230406342848}+.....-\frac{36274370358465}{70408225950198214} \Biggr] \\ ck_m^{-1}=&\Biggl[\frac{529068296355 {a_1} {{v}^{10}} \omega }{10958899552696451612672} +\frac{309943174185 {{v}^{10}} \omega }{2253063230406342848}+.....+\frac{5235879531936735}{70408225950198214} \Biggr] \notag \\ \notag \\ \end{align}
\begin{align} q_1= \ ce_m^{-1} \cdot t_1= x^2-\frac{5 {a_1} \omega }{2496}+\frac{18 \omega }{13}-\frac{31 {a_1}}{24960}-\frac{207}{26} \ \in \ F_1[x] \\ q_2= \ ck_m^{-1} \cdot t_2= x^2+\frac{5 {a_1} \omega }{2496}-\frac{18 \omega }{13}+\frac{19 {a_1}}{24960}-\frac{243}{26} \ \in \ F_1[x] \\ \end{align}
Step2 二項方程式 \(B_1(x)\) と新たな添加数 \(a_2\) の生成
\begin{align}
&ce_m^3= \frac{14 {a_1} \omega }{27}+2304 \omega +\frac{89 {a_1}}{135}-1088 \equiv A_2 \ \in \ F_1\\
&B_2(x)=x^3-A_2=0, \qquad a_2=\sqrt[3]{A_2} \ \in \ F_1(a_2) \equiv \ F_2 \\
\notag \\
&\qquad \Downarrow \notag \\
&t_1 \ \rightarrow \ \tilde{t_1} \equiv a_2 \cdot \biggl( x^2-\frac{5 {a_1} \omega }{2496}+\frac{18 \omega }{13}-\frac{31 {a_1}}{24960}-\frac{207}{26} \biggr) \in F_2[x]\\
\end{align}
\begin{align} &\left\{ \begin{array}{l} g_1(v)= v^{12}-80v^8+2720v^6+11840v^4+587520v^2+1193216 \\ \qquad \qquad +a_1({{v}^{6}}-\frac{232 {{v}^{2}}}{5}+432 )=0 \\ \Omega=\omega^2+\omega+1=0 \\ B_1(a_1)=a_1^2+17510400=0 \\ \end{array} \right.\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} a_2^{-1}=\displaystyle \sum_{i=0}^{11}\displaystyle \sum_{j=0}^1\displaystyle \sum_{k=0}^1 c_{i,j,k} \cdot v^i \cdot \omega^j \cdot a_1^k \\ a_2^{-1} \cdot a_2=1 \\ \end{array} \right.\\ \end{align}