数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} &Gal(F_0(v)/F_0) =\{\rho_{1}, \rho_{2},..., \rho_{24}\} =S_4 : \ Galois \ group \ of \ F_0(v)/F_0 \notag \\ \notag \\ & \ Composition \ series \ of \ Galois \ group \ S_4 \notag \\ \end{align} \begin{align} &S_4 &\rhd & &A_4 & &\rhd & &V_4 & &\rhd &\qquad &N &\qquad &\rhd &\qquad &e \\ &\updownarrow & & &\updownarrow & & & &\updownarrow & & & &\updownarrow & & & &\updownarrow \notag \\ &F_0 &\rightarrow & &F_1 & &\rightarrow & &F_2 & &\rightarrow &\qquad &F_3 &\qquad &\rightarrow &\qquad &F_4 \ ( \ \cong F_0(v)) \\ \end{align} \begin{align} & \qquad \qquad \Downarrow \notag \\ \notag \\ & Galois \ extension & & & &Galois \ Group \notag \\ \notag \\ &[1] \quad [ \ F_1:F_0 \ ]=2 & &\rightarrow & &Gal(F_1/F_0) = S_4/A_4 \cong C_2 \\ \notag \\ &[2] \quad [ \ F_2:F_1 \ ]=3 & &\rightarrow & &Gal(F_2/F_1) = A_4/V_4 \cong C_3 \\ \notag \\ &[3] \quad [ \ F_3:F_2 \ ]=2 & &\rightarrow & &Gal(F_3/F_2) = V_4/N \cong C_2 \\ \notag \\ &[4] \quad [ \ F_4:F_3 \ ]=2 & &\rightarrow & &Gal(F_4/F_3) = N/e \cong C_2\\ \end{align}
\begin{align} S_4&=\{\rho_{1},\rho_{2},\rho_{3},\rho_{4},\rho_{5},\rho_{6},\rho_{7},\rho_{8},\rho_{9},\rho_{10}, \rho_{11},\rho_{12}, \notag \\ &\qquad \rho_{13},\rho_{14},\rho_{15},\rho_{16},\rho_{17},\rho_{18},\rho_{19}, \rho_{20},\rho_{21},\rho_{22},\rho_{23},\rho_{24}\} \notag \\ A_4&=\{\rho_{1},\rho_{4},\rho_{5},\rho_{8},\rho_{9},\rho_{12},\rho_{13},\rho_{16},\rho_{17},\rho_{20},\rho_{21},\rho_{24}\} \notag \\ V_4&=\{\rho_{1},\rho_{8},\rho_{17},\rho_{24}\} \ \ :Klein \ group \notag \\ N&=\{\rho_{1},\rho_{8}\} \notag \\ e&=\{\rho_{1}\} \notag \\ \end{align}